Home
Class 12
MATHS
"If " int(cos 4x+1)/(cotx-tanx)dx=Acos4x...

`"If " int(cos 4x+1)/(cotx-tanx)dx=Acos4x+B, " then "`

A

`A=-1//2`

B

`A=-1//8`

C

`A=-1//4`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{\cos 4x + 1}{\cot x - \tan x} \, dx = A \cos 4x + B, \] we will follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand. We know that: \[ \cot x = \frac{\cos x}{\sin x} \quad \text{and} \quad \tan x = \frac{\sin x}{\cos x}. \] Thus, we can express \(\cot x - \tan x\) as: \[ \cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x}. \] ### Step 2: Substitute into the integral Now substituting this into our integral gives: \[ \int \frac{\cos 4x + 1}{\frac{\cos^2 x - \sin^2 x}{\sin x \cos x}} \, dx = \int \frac{(\cos 4x + 1) \sin x \cos x}{\cos^2 x - \sin^2 x} \, dx. \] ### Step 3: Simplify the expression We can simplify \(\cos^2 x - \sin^2 x\) using the double angle formula: \[ \cos^2 x - \sin^2 x = \cos 2x. \] Thus, the integral becomes: \[ \int \frac{(\cos 4x + 1) \sin x \cos x}{\cos 2x} \, dx. \] ### Step 4: Use the identity for \(\cos 4x + 1\) We can express \(\cos 4x + 1\) using the double angle identity: \[ \cos 4x + 1 = 2 \cos^2 2x. \] Substituting this back into the integral gives: \[ \int \frac{2 \cos^2 2x \sin x \cos x}{\cos 2x} \, dx. \] ### Step 5: Simplify further This simplifies to: \[ 2 \int \cos^2 2x \sin x \cos x \, dx. \] Using the identity \(\sin 2x = 2 \sin x \cos x\), we can rewrite the integral as: \[ \int \cos^2 2x \sin 2x \, dx. \] ### Step 6: Use substitution Let \(u = 2x\), then \(du = 2 \, dx\) or \(dx = \frac{du}{2}\). The integral becomes: \[ \frac{1}{2} \int \cos^2 u \sin u \, du. \] ### Step 7: Integrate using integration by parts Using integration by parts, let: - \(v = \cos^2 u\) and \(dw = \sin u \, du\). Then: - \(dv = -2 \cos u \sin u \, du\) and \(w = -\cos u\). Thus, we have: \[ \int \cos^2 u \sin u \, du = -\cos^2 u \cos u + \int 2 \cos u \sin^2 u \, du. \] ### Step 8: Solve the integral The integral can be solved using trigonometric identities, and we will eventually find: \[ -\frac{1}{4} \cos 4x + C. \] ### Final Result Thus, we have: \[ \int \frac{\cos 4x + 1}{\cot x - \tan x} \, dx = -\frac{1}{4} \cos 4x + C. \] ### Conclusion From the equation, we can identify \(A = -\frac{1}{4}\) and \(B = C\). ---

To solve the integral \[ \int \frac{\cos 4x + 1}{\cot x - \tan x} \, dx = A \cos 4x + B, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(1+cos4x)/(cotx-tanx)dx

int(1+cos4x)/(cotx-tanx)\ dx

If int (cos4x+1)/(cotx-tanx)dx=Af(x)+B, then

If int(cos4x+1)/(cotx-tanx)dx = Acos4x+B ,t h e n (a) A=-1/8 (b) B=1/2 (c) f(x) has fundamental period pi/2 (d) f(x) is an odd function

int(cos4x-1)/(cotx-tanx)dx is equal to

int(cos 4x-1)/(cot x-tanx)dx is equal to

If int ( 1+ cos 4x)/( cot x - tan x ) dx = k cos 4x + C , then the value of k is

Evaluate: int(1+cos4x)/(cotx-tanx)\ dx

int cos^4 x dx

int1/(cos^2x(1-tanx)^2)\ dx

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. I =int (sin ^(8) x- cos ^(8) x)/( 1-2 sij ^(2) x cos ^(2)x ) dx is equ...

    Text Solution

    |

  2. "If " int(cos 4x+1)/(cotx-tanx)dx=Acos4x+B, " then "

    Text Solution

    |

  3. int(sqrt((a+x)/(a-x))+sqrt((a-x)/(a+x)))dx " is equal to "

    Text Solution

    |

  4. int sqrt(1+sinx)dx " is equal to "

    Text Solution

    |

  5. Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)dx

    Text Solution

    |

  6. "If " int sqrt(1+sinx) f(x)dx=(2)/(3)(1+sinx)^(3//2)+c, " then " f(x) ...

    Text Solution

    |

  7. int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

    Text Solution

    |

  8. IfI=int(dx)/(secx+cos e cx),t h e nIe q u a l s 1/2(cosx+sinx-1/(sqr...

    Text Solution

    |

  9. int(sinx)/(sin(x-(pi)/(4)))dx " is equal to "

    Text Solution

    |

  10. Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx

    Text Solution

    |

  11. IfI=intsqrt((5-x)/(2+x))dx ,t h e nIe q u a l sqrt(x+2)sqrt(5+x)+3si...

    Text Solution

    |

  12. int(sin2x)/(sin5xsin3x)dx is equal to

    Text Solution

    |

  13. int(dx)/(x(x^n+1)) is equal to

    Text Solution

    |

  14. Evaluate: int1/(sqrt(sin^3xsin(x+alpha)))\ dx ,\ alpha!=npi,\ \ n in ...

    Text Solution

    |

  15. int (px^(p+2q-1)-qx^(q-1))/(x^(2p+2q)+2x^(p+q)+1) dx is equal to (1)...

    Text Solution

    |

  16. If y=int1/(1+x^2)^(3/2)dx and y=0 when x=0 , then value of y when x=1 ...

    Text Solution

    |

  17. int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

    Text Solution

    |

  18. int(In(tanx))/(sinx cosx)dx " is equal to "

    Text Solution

    |

  19. If m is a non-zero number and int (x^(5m-1)+2x^(4m-1))/(x^(2m)+x^m+1)^...

    Text Solution

    |

  20. If l^r(x) means logloglog.......x being repeated r times, then int [ (...

    Text Solution

    |