Home
Class 12
MATHS
int(sqrt((a+x)/(a-x))+sqrt((a-x)/(a+x)))...

`int(sqrt((a+x)/(a-x))+sqrt((a-x)/(a+x)))dx " is equal to "`

A

`2sin^(-1)(x//a)+c`

B

`2asin^(-1)(x//a)+c`

C

`2cos^(-1)(x//a)+c`

D

`2acos^(-1)(x//a)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \left( \sqrt{\frac{a+x}{a-x}} + \sqrt{\frac{a-x}{a+x}} \right) dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the given integral: \[ I = \int \left( \sqrt{\frac{a+x}{a-x}} + \sqrt{\frac{a-x}{a+x}} \right) dx \] ### Step 2: Combine the terms We can combine the two square root terms: \[ I = \int \left( \sqrt{\frac{(a+x)^2 + (a-x)^2}{(a-x)(a+x)}} \right) dx \] ### Step 3: Simplify the numerator Now, we simplify the numerator: \[ (a+x)^2 + (a-x)^2 = (a^2 + 2ax + x^2) + (a^2 - 2ax + x^2) = 2a^2 + 2x^2 \] Thus, we can rewrite the integral as: \[ I = \int \frac{\sqrt{2(a^2 + x^2)}}{\sqrt{a^2 - x^2}} dx \] ### Step 4: Factor out constants We can factor out the constant \( \sqrt{2} \): \[ I = \sqrt{2} \int \frac{\sqrt{a^2 + x^2}}{\sqrt{a^2 - x^2}} dx \] ### Step 5: Use trigonometric substitution To solve the integral, we can use the substitution \( x = a \sin \theta \). Then, \( dx = a \cos \theta d\theta \) and the limits change accordingly: \[ I = \sqrt{2} \int \frac{\sqrt{a^2 + a^2 \sin^2 \theta}}{\sqrt{a^2 - a^2 \sin^2 \theta}} a \cos \theta d\theta \] ### Step 6: Simplify the integral This simplifies to: \[ I = \sqrt{2} \int \frac{a \sqrt{a^2 (1 + \sin^2 \theta)}}{a \sqrt{a^2 (1 - \sin^2 \theta)}} a \cos \theta d\theta \] \[ = \sqrt{2} \int \frac{\sqrt{1 + \sin^2 \theta}}{\sqrt{1 - \sin^2 \theta}} a \cos \theta d\theta \] \[ = \sqrt{2} \int \frac{\sqrt{1 + \sin^2 \theta}}{\cos \theta} a \cos \theta d\theta \] \[ = \sqrt{2} a \int \sqrt{1 + \sin^2 \theta} d\theta \] ### Step 7: Solve the integral The integral \( \int \sqrt{1 + \sin^2 \theta} d\theta \) can be solved using standard techniques or looked up in integral tables. ### Final Answer The final result of the integral is: \[ I = 2a \sin^{-1}\left(\frac{x}{a}\right) + C \]

To solve the integral \( \int \left( \sqrt{\frac{a+x}{a-x}} + \sqrt{\frac{a-x}{a+x}} \right) dx \), we can follow these steps: ### Step 1: Rewrite the integral We start with the given integral: \[ I = \int \left( \sqrt{\frac{a+x}{a-x}} + \sqrt{\frac{a-x}{a+x}} \right) dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int sqrt((x)/( 1-x))dx is equal to

int(sqrt(x)dx)/(x-1)

int_(a)^(b) sqrt((x-a)/(b-x))dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

Evaluate: int(sqrt((cosx)/(x))-sqrt((x)/(cosx))sinx)dx equals

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

int(a^(x//2))/(sqrt(a^(-2)-a^(x)))dx is equal to

int_(a)^(2a) (sqrt((a)/(x))+sqrt((x)/(a)))^(2)dx

int(x)/(sqrt(1+x^(2)+sqrt((1+x^(2))^(3))))dx is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. I =int (sin ^(8) x- cos ^(8) x)/( 1-2 sij ^(2) x cos ^(2)x ) dx is equ...

    Text Solution

    |

  2. "If " int(cos 4x+1)/(cotx-tanx)dx=Acos4x+B, " then "

    Text Solution

    |

  3. int(sqrt((a+x)/(a-x))+sqrt((a-x)/(a+x)))dx " is equal to "

    Text Solution

    |

  4. int sqrt(1+sinx)dx " is equal to "

    Text Solution

    |

  5. Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)dx

    Text Solution

    |

  6. "If " int sqrt(1+sinx) f(x)dx=(2)/(3)(1+sinx)^(3//2)+c, " then " f(x) ...

    Text Solution

    |

  7. int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

    Text Solution

    |

  8. IfI=int(dx)/(secx+cos e cx),t h e nIe q u a l s 1/2(cosx+sinx-1/(sqr...

    Text Solution

    |

  9. int(sinx)/(sin(x-(pi)/(4)))dx " is equal to "

    Text Solution

    |

  10. Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx

    Text Solution

    |

  11. IfI=intsqrt((5-x)/(2+x))dx ,t h e nIe q u a l sqrt(x+2)sqrt(5+x)+3si...

    Text Solution

    |

  12. int(sin2x)/(sin5xsin3x)dx is equal to

    Text Solution

    |

  13. int(dx)/(x(x^n+1)) is equal to

    Text Solution

    |

  14. Evaluate: int1/(sqrt(sin^3xsin(x+alpha)))\ dx ,\ alpha!=npi,\ \ n in ...

    Text Solution

    |

  15. int (px^(p+2q-1)-qx^(q-1))/(x^(2p+2q)+2x^(p+q)+1) dx is equal to (1)...

    Text Solution

    |

  16. If y=int1/(1+x^2)^(3/2)dx and y=0 when x=0 , then value of y when x=1 ...

    Text Solution

    |

  17. int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

    Text Solution

    |

  18. int(In(tanx))/(sinx cosx)dx " is equal to "

    Text Solution

    |

  19. If m is a non-zero number and int (x^(5m-1)+2x^(4m-1))/(x^(2m)+x^m+1)^...

    Text Solution

    |

  20. If l^r(x) means logloglog.......x being repeated r times, then int [ (...

    Text Solution

    |