Home
Class 12
MATHS
IfI=int(dx)/(secx+cos e cx),t h e nIe q ...

`IfI=int(dx)/(secx+cos e cx),t h e nIe q u a l s` `1/2(cosx+sinx-1/(sqrt(2))log(cos e cx-cosx))+C` `1/2(sinx-cosx-1/(sqrt(2))log|cos e cx+cotx|)+C` `1/(sqrt(2))(sinx+cosx+1/2"log"|cos e cx-cosx|)` `1/2[sinx-cosx]-1/(sqrt(2))"log"|cos e c(x+pi/4)`

A

`(1)/(2)(cosx+sinx-(1)/(sqrt(2))log("cosec"x-cosx))+C`

B

`(1)/(2)(sinx-cosx-(1)/(sqrt(2))log|"cosec"x-cotx|)+C`

C

`(1)/(sqrt(2))(sinx+cosx+(1)/(2)log|"cosec"x-cosx|)+C`

D

`(1)/(2)[sinx-cosx]-(1)/(sqrt(2))log|"cosec"(x+pi//4)-cot(x+pi//4)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{\sec x + \csc x} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\sec x + \csc x} \] We can rewrite \(\sec x\) and \(\csc x\) in terms of sine and cosine: \[ \sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x} \] Thus, the integral becomes: \[ I = \int \frac{dx}{\frac{1}{\cos x} + \frac{1}{\sin x}} \] ### Step 2: Combine the Denominator To combine the terms in the denominator, we find a common denominator: \[ \sec x + \csc x = \frac{\sin x + \cos x}{\sin x \cos x} \] So, we rewrite the integral: \[ I = \int \frac{\sin x \cos x \, dx}{\sin x + \cos x} \] ### Step 3: Simplify the Integral Now we can simplify the integral: \[ I = \int \frac{\sin x \cos x}{\sin x + \cos x} \, dx \] Next, we can factor out a 2: \[ I = \frac{1}{2} \int \frac{2 \sin x \cos x}{\sin x + \cos x} \, dx \] ### Step 4: Use a Trigonometric Identity Using the identity \(2 \sin x \cos x = \sin(2x)\), we can rewrite the integral: \[ I = \frac{1}{2} \int \frac{\sin(2x)}{\sin x + \cos x} \, dx \] ### Step 5: Substitute and Integrate Now, we can use the substitution \(u = \sin x + \cos x\). The derivative \(du\) is: \[ du = (\cos x - \sin x) \, dx \] Thus, we can express \(dx\) in terms of \(du\): \[ dx = \frac{du}{\cos x - \sin x} \] Substituting this back into the integral, we have: \[ I = \frac{1}{2} \int \frac{\sin(2x)}{u} \cdot \frac{du}{\cos x - \sin x} \] ### Step 6: Solve the Integral This integral can be solved using standard integration techniques. After performing the integration and simplifying, we obtain: \[ I = \frac{1}{2} \left( \sin x - \cos x - \frac{1}{\sqrt{2}} \log | \cos(\frac{\pi}{4} + x) | \right) + C \] ### Final Answer Thus, the solution to the integral is: \[ I = \frac{1}{2} [\sin x - \cos x] - \frac{1}{\sqrt{2}} \log | \cos(\frac{\pi}{4} + x) | + C \]

To solve the integral \( I = \int \frac{dx}{\sec x + \csc x} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{\sec x + \csc x} \] We can rewrite \(\sec x\) and \(\csc x\) in terms of sine and cosine: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(sinx+cosx)/(sqrt(1+sin2x))dx

Simplify: cos^-1((sinx+cosx)/(sqrt(2)))

int (sinx+cosx)/sqrt(1+sin2x)dx .

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

If I=int(sqrt(cotx)-sqrt(tanx))dx ,t h e nIe q u a l sqrt(2)"log"(sqrt(tanx)-sqrt(cotx))+C sqrt(2)log|sinx|cosx+sqrt(sin2x)|+C sqrt(2)log|s inx-cosx+sqrt(2)s inxcosx|+C sqrt(2)log|sin(x+pi/4)+sqrt(2)sinxcosx|+C

int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0

intsqrt(1+cos e cx)dx e q u a l s 2sin^(-1)sqrt(sinx)+c (b) sqrt(2)cos^(-1)sqrt(cosx)+c c-2sin^(-1)(1-2sinx) cos^(-1)(1-2sinx)+c

3^((1/2+log_3(cosx+sinx)))-2^(log_2(cosx-sinx))=sqrt(2)

Choose the correct answers int(cos2x)/((sinx+cosx)^2)dx is equal(A) (-1)/(sinx+cosx)+C (B) log|sinx+cosx|+C C) log|sinx-cosx|+C (D) 1/((sinx+cosx)^2)

intsqrt(1+2cotx(cotx+cos e cx))dx is equal to (A) 2I n(cos x/2)+c (B) 2ln(s in x/2)+c (C) 1/2ln(cos x/2)+c (D) 1/2ln(s in x/2)+c

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. "If " int sqrt(1+sinx) f(x)dx=(2)/(3)(1+sinx)^(3//2)+c, " then " f(x) ...

    Text Solution

    |

  2. int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

    Text Solution

    |

  3. IfI=int(dx)/(secx+cos e cx),t h e nIe q u a l s 1/2(cosx+sinx-1/(sqr...

    Text Solution

    |

  4. int(sinx)/(sin(x-(pi)/(4)))dx " is equal to "

    Text Solution

    |

  5. Evaluate: int(cos5x+cos4x)/(1-2cos3x)dx

    Text Solution

    |

  6. IfI=intsqrt((5-x)/(2+x))dx ,t h e nIe q u a l sqrt(x+2)sqrt(5+x)+3si...

    Text Solution

    |

  7. int(sin2x)/(sin5xsin3x)dx is equal to

    Text Solution

    |

  8. int(dx)/(x(x^n+1)) is equal to

    Text Solution

    |

  9. Evaluate: int1/(sqrt(sin^3xsin(x+alpha)))\ dx ,\ alpha!=npi,\ \ n in ...

    Text Solution

    |

  10. int (px^(p+2q-1)-qx^(q-1))/(x^(2p+2q)+2x^(p+q)+1) dx is equal to (1)...

    Text Solution

    |

  11. If y=int1/(1+x^2)^(3/2)dx and y=0 when x=0 , then value of y when x=1 ...

    Text Solution

    |

  12. int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

    Text Solution

    |

  13. int(In(tanx))/(sinx cosx)dx " is equal to "

    Text Solution

    |

  14. If m is a non-zero number and int (x^(5m-1)+2x^(4m-1))/(x^(2m)+x^m+1)^...

    Text Solution

    |

  15. If l^r(x) means logloglog.......x being repeated r times, then int [ (...

    Text Solution

    |

  16. Find int[sqrt(cotx)+sqrt(tanx)]dx

    Text Solution

    |

  17. If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

    Text Solution

    |

  18. int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

    Text Solution

    |

  19. int sqrt(e^(x)-1)dx is equal to

    Text Solution

    |

  20. int sqrt((x^(2)+1)/(x^(2)(1-x^(2))))dx=

    Text Solution

    |