Home
Class 12
MATHS
int(sinx)/(sin(x-(pi)/(4)))dx " is equal...

`int(sinx)/(sin(x-(pi)/(4)))dx " is equal to "`

A

`(1)/(sqrt(2))(x+log_(e)|cos(x-(pi)/(4))|)+c`

B

`(1)/(sqrt(2))(x-log_(e)|sin(x-(pi)/(4))|)+c`

C

`sqrt(2)(x+log_(e)|sin(x-(pi)/(4))|)+c`

D

`(1)/(sqrt(2))(x+log_(e)|sin(x-(pi)/(4))|)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin x}{\sin\left(x - \frac{\pi}{4}\right)} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand using the sine addition formula: \[ \sin\left(x - \frac{\pi}{4}\right) = \sin x \cos\frac{\pi}{4} - \cos x \sin\frac{\pi}{4} \] Since \(\cos\frac{\pi}{4} = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}\), we have: \[ \sin\left(x - \frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(\sin x - \cos x) \] ### Step 2: Substitute into the integral Now, substituting this into the integral gives: \[ I = \int \frac{\sin x}{\frac{1}{\sqrt{2}}(\sin x - \cos x)} \, dx = \sqrt{2} \int \frac{\sin x}{\sin x - \cos x} \, dx \] ### Step 3: Simplify the integrand We can separate the integrand: \[ I = \sqrt{2} \int \left(1 + \frac{\cos x}{\sin x - \cos x}\right) \, dx \] This can be split into two integrals: \[ I = \sqrt{2} \int 1 \, dx + \sqrt{2} \int \frac{\cos x}{\sin x - \cos x} \, dx \] ### Step 4: Evaluate the first integral The first integral is straightforward: \[ \sqrt{2} \int 1 \, dx = \sqrt{2} x \] ### Step 5: Evaluate the second integral For the second integral, we can use the substitution \( u = \sin x - \cos x \), where \( du = (\cos x + \sin x) \, dx \). We can express \( \cos x \) in terms of \( u \): \[ \cos x = u + \cos x \] Thus, the integral becomes: \[ \sqrt{2} \int \frac{\cos x}{u} \cdot \frac{du}{\cos x + \sin x} \] This integral can be simplified and evaluated using logarithmic identities. ### Step 6: Combine the results After evaluating the second integral, we combine both parts: \[ I = \sqrt{2} x + \text{(result of the second integral)} + C \] ### Final Answer Thus, the final result is: \[ I = \sqrt{2} x + \frac{1}{\sqrt{2}} \log|\sin x - \cos x| + C \]

To solve the integral \( I = \int \frac{\sin x}{\sin\left(x - \frac{\pi}{4}\right)} \, dx \), we will follow these steps: ### Step 1: Rewrite the integrand We can rewrite the integrand using the sine addition formula: \[ \sin\left(x - \frac{\pi}{4}\right) = \sin x \cos\frac{\pi}{4} - \cos x \sin\frac{\pi}{4} \] Since \(\cos\frac{\pi}{4} = \sin\frac{\pi}{4} = \frac{1}{\sqrt{2}}\), we have: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The value of sqrt(2)int(sinx)/(sin(x-(pi)/(4)))dx , is

int(2sinx+(1)/(x))dx is equal to

int(sinx)/(1+sin x) dx

If int(sinx)/(sin(x-(pi)/(4)))dx=Af(x)+(1)/(sqrt2)log[|sinx-cosx|]+c, then

int(2sinx)/(3+sin2x)dx is equal to

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

The value of int_(0)^(2 pi)(sin^(2)x-cos^(4)x)dx is equal to pi/k then k

Evaluate: int(sinx)/(sin(x-a))dx

int(x+sinx)/(1+cosx) dx is equal to

int sinx/sin(3x) dx=