Home
Class 12
MATHS
int(sin2x)/(sin5xsin3x)dx is equal to...

`int(sin2x)/(sin5xsin3x)dx` is equal to

A

`log sin3x-log sin5x+c`

B

`(1)/(3)log sin3x+(1)/(5)log sin5x+c`

C

`(1)/(3)log sin3x-(1)/(5)log sin5x+c`

D

`3log sin3x-5log sin5x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sin 2x}{\sin 5x \sin 3x} \, dx \), we can use the identity for the sine of a difference. Here are the steps to solve it: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin 2x}{\sin 5x \sin 3x} \, dx \] ### Step 2: Use the Sine Difference Identity We can express \( \sin 2x \) in terms of \( \sin(5x - 3x) \): \[ \sin 2x = \sin(5x - 3x) = \sin 5x \cos 3x - \cos 5x \sin 3x \] Thus, we rewrite the integral: \[ I = \int \frac{\sin 5x \cos 3x - \cos 5x \sin 3x}{\sin 5x \sin 3x} \, dx \] ### Step 3: Split the Integral Now we can split the integral into two parts: \[ I = \int \left( \frac{\sin 5x \cos 3x}{\sin 5x \sin 3x} - \frac{\cos 5x \sin 3x}{\sin 5x \sin 3x} \right) \, dx \] This simplifies to: \[ I = \int \left( \cot 3x - \cot 5x \right) \, dx \] ### Step 4: Integrate Each Term Now we can integrate each term separately: \[ I = \int \cot 3x \, dx - \int \cot 5x \, dx \] Using the integral formula \( \int \cot kx \, dx = \frac{1}{k} \ln |\sin kx| + C \), we get: \[ I = \frac{1}{3} \ln |\sin 3x| - \frac{1}{5} \ln |\sin 5x| + C \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{1}{3} \ln |\sin 3x| - \frac{1}{5} \ln |\sin 5x| + C \]

To solve the integral \( \int \frac{\sin 2x}{\sin 5x \sin 3x} \, dx \), we can use the identity for the sine of a difference. Here are the steps to solve it: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{\sin 2x}{\sin 5x \sin 3x} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int3sin(x)dx is equal to:

int2sin(x)dx is equal to:

int(2sinx)/(3+sin2x)dx is equal to

int 2 sin (x)dx is equal to :

Evaluate: (i) int(sin2x)/(sin5xsin3x)\ dx (ii) int(1+cotx)/(x+logsinx)\ dx

The value of int(sinx-cosx)/(sqrt(sin2x)dx is equal to

int sin x .sin2x.sin3x dx

int x^2/(xsin x+cosx)^2dx is equal to

The value of the definite integral int_(0)^(pi//2)sin x sin 2x sin 3x dx is equal to

Evaluate: int(sin2x)/(sin5xsin3x)dx