Home
Class 12
MATHS
int(dx)/(x(x^n+1)) is equal to...

`int(dx)/(x(x^n+1))` is equal to

A

`(1)/(n)log((x^(n))/(x^(n)+1))+c`

B

`(1)/(n)log((x^(n)+1)/(x^(n)))+c`

C

`log((x^(n))/(x^(n)+1))+c`

D

non of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{dx}{x(x^n + 1)} \), we will follow these steps: ### Step 1: Substitution Let \( t = x^n \). Then, differentiating both sides gives us: \[ dt = n x^{n-1} dx \quad \Rightarrow \quad dx = \frac{dt}{n x^{n-1}}. \] Since \( x = t^{1/n} \), we have: \[ x^{n-1} = (t^{1/n})^{n-1} = t^{(n-1)/n}. \] Thus, we can express \( dx \) in terms of \( t \): \[ dx = \frac{dt}{n t^{(n-1)/n}} = \frac{dt}{n t^{(n-1)/n}}. \] ### Step 2: Rewrite the Integral Substituting \( dx \) into the integral gives us: \[ \int \frac{dx}{x(x^n + 1)} = \int \frac{1}{x(t + 1)} \cdot \frac{dt}{n t^{(n-1)/n}}. \] Since \( x = t^{1/n} \), we have: \[ \int \frac{1}{t^{1/n}(t + 1)} \cdot \frac{dt}{n t^{(n-1)/n}} = \frac{1}{n} \int \frac{dt}{t(t + 1)}. \] ### Step 3: Partial Fraction Decomposition We can decompose \( \frac{1}{t(t + 1)} \) using partial fractions: \[ \frac{1}{t(t + 1)} = \frac{A}{t} + \frac{B}{t + 1}. \] Multiplying through by \( t(t + 1) \) gives: \[ 1 = A(t + 1) + Bt. \] Setting \( t = 0 \) gives \( A = 1 \). Setting \( t = -1 \) gives \( B = -1 \). Thus, we have: \[ \frac{1}{t(t + 1)} = \frac{1}{t} - \frac{1}{t + 1}. \] ### Step 4: Integrate Now we can integrate: \[ \frac{1}{n} \int \left( \frac{1}{t} - \frac{1}{t + 1} \right) dt = \frac{1}{n} \left( \log |t| - \log |t + 1| \right) + C. \] This simplifies to: \[ \frac{1}{n} \log \left| \frac{t}{t + 1} \right| + C. \] ### Step 5: Back Substitute Recalling that \( t = x^n \), we substitute back: \[ \frac{1}{n} \log \left| \frac{x^n}{x^n + 1} \right| + C. \] ### Final Answer Thus, the final answer is: \[ \int \frac{dx}{x(x^n + 1)} = \frac{1}{n} \log \left| \frac{x^n}{x^n + 1} \right| + C. \]

To solve the integral \( \int \frac{dx}{x(x^n + 1)} \), we will follow these steps: ### Step 1: Substitution Let \( t = x^n \). Then, differentiating both sides gives us: \[ dt = n x^{n-1} dx \quad \Rightarrow \quad dx = \frac{dt}{n x^{n-1}}. \] Since \( x = t^{1/n} \), we have: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

l=int(dx)/(1+e^(x)) is equal to

The value of int(dx)/(x^(2)+x+1) is equal to

int(1)/(x(x^(4)-1))dx is equal to

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

int( dx )/( x ( x^(7) +1)) is equal to

int (dx)/(x(x^(2)+1))" equals "

int(x^(3))/(x+1)dx is equal to

int(x^3-x)/(1+x^6)dx is equal to

int(2sinx+(1)/(x))dx is equal to

The value of int(dx)/(x^n(1+x^n)^(1/ n)) is equal to