Home
Class 12
MATHS
If y=int1/(1+x^2)^(3/2)dx and y=0 when x...

If `y=int1/(1+x^2)^(3/2)dx` and `y=0` when `x=0` , then value of y when `x=1` is

A

`(1)/(sqrt(2))`

B

`sqrt(2)`

C

`2sqrt(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we start with the given integral: ### Step 1: Set up the integral We have: \[ y = \int \frac{1}{(1 + x^2)^{3/2}} \, dx \] ### Step 2: Use a trigonometric substitution Let \( x = \tan(\theta) \). Then, the differential \( dx \) becomes: \[ dx = \sec^2(\theta) \, d\theta \] Also, we know that: \[ 1 + x^2 = 1 + \tan^2(\theta) = \sec^2(\theta) \] Thus, we can rewrite the integral as: \[ y = \int \frac{1}{(\sec^2(\theta))^{3/2}} \sec^2(\theta) \, d\theta \] ### Step 3: Simplify the integral We simplify the expression: \[ (\sec^2(\theta))^{3/2} = \sec^3(\theta) \] So the integral becomes: \[ y = \int \frac{\sec^2(\theta)}{\sec^3(\theta)} \, d\theta = \int \cos(\theta) \, d\theta \] ### Step 4: Integrate The integral of \( \cos(\theta) \) is: \[ y = \sin(\theta) + C \] ### Step 5: Back-substitute for \( \theta \) Since \( \theta = \tan^{-1}(x) \), we have: \[ y = \sin(\tan^{-1}(x)) + C \] ### Step 6: Find the value of \( \sin(\tan^{-1}(x)) \) Using the identity for sine: \[ \sin(\tan^{-1}(x)) = \frac{x}{\sqrt{1 + x^2}} \] Thus, we can write: \[ y = \frac{x}{\sqrt{1 + x^2}} + C \] ### Step 7: Apply the initial condition We know that \( y = 0 \) when \( x = 0 \): \[ 0 = \frac{0}{\sqrt{1 + 0^2}} + C \implies C = 0 \] So we have: \[ y = \frac{x}{\sqrt{1 + x^2}} \] ### Step 8: Find \( y \) when \( x = 1 \) Now, we substitute \( x = 1 \): \[ y = \frac{1}{\sqrt{1 + 1^2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \] ### Final Answer Thus, the value of \( y \) when \( x = 1 \) is: \[ \frac{1}{\sqrt{2}} \] ---

To solve the problem step by step, we start with the given integral: ### Step 1: Set up the integral We have: \[ y = \int \frac{1}{(1 + x^2)^{3/2}} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If dy/dx=e^(-2y) and y=0 when x=5, then the value of x for y=3 is

If ye^(y) dx = (y^(3) + 2xe^(y))dy, y(0) = 1 , then the value of x when y = 0 is

Draw the graph of the equation 4x+3y+6=0 From the graph find (i) y_(1) the value of y, when x=12 (ii) y_(2) the value of y, when x=-6

If dy/dx+2ytanx=sinx and y=0 , when x=pi/3 , show that the maximum value of y is 1/8

Draw the graph of the equation 3x+2y-5=0 . Use this graph to find: (i) x_(1) the value of x, when y=7 (ii) y_(1) the value of y, when x=3

Consider the differential equation ydx-(x+y^(2))dy=0 . If for y=1, x takes value 1, then value of x when y = 4, is

Draw the graph of equation 3x-4y=12 Use the graph drawn to find: (i) y_(1) , the value of y, when x=4 (ii) y_(2) the value of y, when x=0

Draw the graph of x+2y =5 .From the graph , find (i) x_(1) the value of x when y =-1 (ii) y_(1) the value of y when x=-3

If y(x) is a solution of (dy)/(dx)-(xy)/(1+x)=(1)/(1+x) and y(0)=-1 , then the value of y(2) is

Solve the differential equation (dy)/(dx) = y + int_(0)^(1)y(x)dx , given that the value of y is 1 , when x = 0 .

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Evaluate: int1/(sqrt(sin^3xsin(x+alpha)))\ dx ,\ alpha!=npi,\ \ n in ...

    Text Solution

    |

  2. int (px^(p+2q-1)-qx^(q-1))/(x^(2p+2q)+2x^(p+q)+1) dx is equal to (1)...

    Text Solution

    |

  3. If y=int1/(1+x^2)^(3/2)dx and y=0 when x=0 , then value of y when x=1 ...

    Text Solution

    |

  4. int sqrt(x)(1+x^(1//3))^(4)dx " is equal to "

    Text Solution

    |

  5. int(In(tanx))/(sinx cosx)dx " is equal to "

    Text Solution

    |

  6. If m is a non-zero number and int (x^(5m-1)+2x^(4m-1))/(x^(2m)+x^m+1)^...

    Text Solution

    |

  7. If l^r(x) means logloglog.......x being repeated r times, then int [ (...

    Text Solution

    |

  8. Find int[sqrt(cotx)+sqrt(tanx)]dx

    Text Solution

    |

  9. If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

    Text Solution

    |

  10. int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

    Text Solution

    |

  11. int sqrt(e^(x)-1)dx is equal to

    Text Solution

    |

  12. int sqrt((x^(2)+1)/(x^(2)(1-x^(2))))dx=

    Text Solution

    |

  13. int(sqrt(x^2+10 x+24))/(x+5)dx is equal to

    Text Solution

    |

  14. The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

    Text Solution

    |

  15. "If "int x^(5)(1+x^(3))^(2//3)dx=A(1+x^(3))^(8//3)+B(1+x^(3))^(5//3)+c...

    Text Solution

    |

  16. int(sin2x)/(sin^4x+cos^4x)d x

    Text Solution

    |

  17. int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is equal to"

    Text Solution

    |

  18. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  19. int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal t...

    Text Solution

    |

  20. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |