Home
Class 12
MATHS
int(In(tanx))/(sinx cosx)dx " is equal t...

`int(In(tanx))/(sinx cosx)dx " is equal to "`

A

`(1)/(2)In(tanx)+c`

B

`(1)/(2)In(tan^(2)x)+c`

C

`(1)/(2)(In(tanx))^(2)+c`

D

non of these

Text Solution

Verified by Experts

The correct Answer is:
C

`I=int(In(tanx))/(sinx cosx)dx`
`"Let " t=In(tanx)`
`"or " (dt)/(dx)=(sec^(2)x)/(tanx)`
`"or " dt=(dx)/(sinx cosx)`
`:. I=int tdt=(1)/(2)t^(2)+C=(1)/(2)(In(tanx))^(2)+C`
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

inte^(tanx)(secx-sinx)dx is equal to

int(cos2x)/((sinx+cosx)^(2))dx is equal to

inte^(tanx)(secx-sinx)dx"is equal to"

int(1)/(cosx-sinx)dx is equal to

int(x+sinx)/(1+cosx) dx is equal to

The value of int(cos2x)/(sinx+cosx)^(2) dx is equal to

int(1+sinx)/(sinx(1+cosx))dx

int(1+sinx)/(sinx(1+cosx))dx

Given int_(0)^(pi//2)(dx)/(1+sinx+cosx)=A . Then the value of the definite integral int_(0)^(pi//2)(sinx)/(1+sinx+cosx)dx is equal to

I=int_(pi//5)^(3pi//10) (sinx)/(sinx+cosx)dx is equal to