Home
Class 12
MATHS
If I= int (sin 2x)/((3+4cosx)^(3))dx, t...

If `I= int (sin 2x)/((3+4cosx)^(3))dx,` then `I` equals

A

`(3cos x+8)/((3+4cosx)^(2))+C`

B

`(3+8cos x)/(16(3+4cosx)^(2))+C`

C

`(3+cos x)/((3+4cosx)^(2))+C`

D

`(3-8cos x)/(16(3+4cosx)^(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sin 2x}{(3 + 4\cos x)^3} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We know that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite the integral as: \[ I = \int \frac{2 \sin x \cos x}{(3 + 4\cos x)^3} \, dx \] ### Step 2: Substitution Let \( t = 3 + 4\cos x \). Then, we differentiate \( t \) with respect to \( x \): \[ dt = -4 \sin x \, dx \quad \Rightarrow \quad \sin x \, dx = -\frac{1}{4} dt \] Now, we can substitute \( t \) and \( \sin x \, dx \) into the integral: \[ I = \int \frac{2(-\frac{1}{4} dt) \cos x}{t^3} \] This simplifies to: \[ I = -\frac{1}{2} \int \frac{\cos x}{t^3} \, dt \] ### Step 3: Express \( \cos x \) in terms of \( t \) From our substitution \( t = 3 + 4\cos x \), we can express \( \cos x \) as: \[ \cos x = \frac{t - 3}{4} \] Substituting this back into the integral gives: \[ I = -\frac{1}{2} \int \frac{\frac{t - 3}{4}}{t^3} \, dt \] This simplifies to: \[ I = -\frac{1}{8} \int \frac{t - 3}{t^3} \, dt = -\frac{1}{8} \int \left( \frac{1}{t^2} - \frac{3}{t^3} \right) \, dt \] ### Step 4: Integrate Now we can integrate term by term: \[ I = -\frac{1}{8} \left( -\frac{1}{t} + \frac{3}{2t^2} \right) + C \] This simplifies to: \[ I = \frac{1}{8t} - \frac{3}{16t^2} + C \] ### Step 5: Substitute back for \( t \) Recall that \( t = 3 + 4\cos x \). Substituting back gives: \[ I = \frac{1}{8(3 + 4\cos x)} - \frac{3}{16(3 + 4\cos x)^2} + C \] ### Final Answer Thus, the final answer for the integral is: \[ I = \frac{1}{8(3 + 4\cos x)} - \frac{3}{16(3 + 4\cos x)^2} + C \]

To solve the integral \( I = \int \frac{\sin 2x}{(3 + 4\cos x)^3} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We know that \( \sin 2x = 2 \sin x \cos x \). Thus, we can rewrite the integral as: \[ I = \int \frac{2 \sin x \cos x}{(3 + 4\cos x)^3} \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

IfI=int(sin2x)/((3+4cosx)^3)dx ,t h e nIe q u a l s (a) (3cosx+8)/((3+4cosx)^2)+C (b) (3+8cosx)/(16(3+4cosx)^2)+C (c) (3cosx)/((3+4cosx)^2)+C (d) (3-8cosx)/(16(3+4cosx)^2)+C

int(sin2x)/(cos^2x+3cosx+2)dx

If I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2)) , then I equals

If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))) , then I equals

If I=int_(-2)^(2) dx , then I equals

int (cosx)/(sqrt(4-sin^2x)) dx

Let I=int(cos^(3)x)/(1+sin^(2)x)dx , then I is equal to (where c is the constant of integration )

int sin^2(4x+3)dx

If I=int_(-pi)^(pi) (sin^(2))/(1+a^(x))dx, a gt 0 , then I equals

If I _(n)=int _(0)^(pi) (sin (2nx))/(sin 2x)dx, then the value of I _( n +(1)/(2)) is equal to (n in I) :

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. If l^r(x) means logloglog.......x being repeated r times, then int [ (...

    Text Solution

    |

  2. Find int[sqrt(cotx)+sqrt(tanx)]dx

    Text Solution

    |

  3. If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

    Text Solution

    |

  4. int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

    Text Solution

    |

  5. int sqrt(e^(x)-1)dx is equal to

    Text Solution

    |

  6. int sqrt((x^(2)+1)/(x^(2)(1-x^(2))))dx=

    Text Solution

    |

  7. int(sqrt(x^2+10 x+24))/(x+5)dx is equal to

    Text Solution

    |

  8. The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

    Text Solution

    |

  9. "If "int x^(5)(1+x^(3))^(2//3)dx=A(1+x^(3))^(8//3)+B(1+x^(3))^(5//3)+c...

    Text Solution

    |

  10. int(sin2x)/(sin^4x+cos^4x)d x

    Text Solution

    |

  11. int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is equal to"

    Text Solution

    |

  12. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  13. int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal t...

    Text Solution

    |

  14. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  15. If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (...

    Text Solution

    |

  16. int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

    Text Solution

    |

  17. intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e...

    Text Solution

    |

  18. int(3+2cosx)/((2+3cosx)^2)dx is equal to (a) ((sinx)/(3cosx+2))+c (b...

    Text Solution

    |

  19. "If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))...

    Text Solution

    |

  20. The value of the integral int((1-costheta)^(2/7))/((1+costheta)^(9/7))...

    Text Solution

    |