Home
Class 12
MATHS
int(sqrt(x^2+10 x+24))/(x+5)dx is equal ...

`int(sqrt(x^2+10 x+24))/(x+5)dx` is equal to

A

`sqrt(x^(2)+10x+24)+sec^(-1)(x+5)+c`

B

`sqrt(x^(2)+10x+24)-"cosec"^(-1)(x+5)+c`

C

`sec^(-1)(x+5)-sqrt(x^(2)+10x+24)+c`

D

`sqrt(x^(2)+10x+24)-sec^(-1)(x+5)+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{x^2 + 10x + 24}}{x + 5} \, dx \), we can follow these steps: ### Step 1: Simplify the Expression Under the Square Root First, we simplify the expression under the square root: \[ x^2 + 10x + 24 = (x + 5)^2 - 1 \] This means we can rewrite the integral as: \[ \int \frac{\sqrt{(x + 5)^2 - 1}}{x + 5} \, dx \] ### Step 2: Use Trigonometric Substitution Next, we can use the substitution \( x + 5 = \sec(\theta) \). Therefore, \( dx = \sec(\theta) \tan(\theta) \, d\theta \). The integral now becomes: \[ \int \frac{\sqrt{\sec^2(\theta) - 1}}{\sec(\theta)} \sec(\theta) \tan(\theta) \, d\theta \] Since \( \sqrt{\sec^2(\theta) - 1} = \tan(\theta) \), we can simplify the integral to: \[ \int \tan^2(\theta) \, d\theta \] ### Step 3: Integrate \( \tan^2(\theta) \) Using the identity \( \tan^2(\theta) = \sec^2(\theta) - 1 \), we can rewrite the integral: \[ \int \tan^2(\theta) \, d\theta = \int (\sec^2(\theta) - 1) \, d\theta = \int \sec^2(\theta) \, d\theta - \int 1 \, d\theta \] The integrals evaluate to: \[ \tan(\theta) - \theta + C \] ### Step 4: Substitute Back to Original Variable Now we need to substitute back to the variable \( x \). Recall that: \[ \tan(\theta) = \sqrt{(x + 5)^2 - 1} = \sqrt{x^2 + 10x + 24 - 1} = \sqrt{x^2 + 10x + 23} \] And since \( \theta = \sec^{-1}(x + 5) \), we have: \[ \int \frac{\sqrt{x^2 + 10x + 24}}{x + 5} \, dx = \sqrt{x^2 + 10x + 23} - \sec^{-1}(x + 5) + C \] ### Final Answer Thus, the final answer is: \[ \int \frac{\sqrt{x^2 + 10x + 24}}{x + 5} \, dx = \sqrt{x^2 + 10x + 23} - \sec^{-1}(x + 5) + C \]

To solve the integral \( \int \frac{\sqrt{x^2 + 10x + 24}}{x + 5} \, dx \), we can follow these steps: ### Step 1: Simplify the Expression Under the Square Root First, we simplify the expression under the square root: \[ x^2 + 10x + 24 = (x + 5)^2 - 1 \] This means we can rewrite the integral as: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int5sqrt(x^2)dx

4 int (sqrt(a^(6)+x^(8)))/(x) dx is equal to

int(sqrt(x))/(1+4sqrt(x^(3)))dx is equal to

int(cos sqrt(x))/( sqrt(x)) dx is equal to

int(x+sqrt(x+1))/(x+2) dx is equal to:

int (x^2-2)/(x^3 sqrt(x^2-1)) dx is equal to

int ( dx)/( sqrt( 2x - x^(2))) is equal to

int_(5/2)^5(sqrt((25-x^2)^3))/(x^4)dx is equal to

int_(a)^(b) sqrt((x-a)/(b-x))dx is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. int sqrt(e^(x)-1)dx is equal to

    Text Solution

    |

  2. int sqrt((x^(2)+1)/(x^(2)(1-x^(2))))dx=

    Text Solution

    |

  3. int(sqrt(x^2+10 x+24))/(x+5)dx is equal to

    Text Solution

    |

  4. The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

    Text Solution

    |

  5. "If "int x^(5)(1+x^(3))^(2//3)dx=A(1+x^(3))^(8//3)+B(1+x^(3))^(5//3)+c...

    Text Solution

    |

  6. int(sin2x)/(sin^4x+cos^4x)d x

    Text Solution

    |

  7. int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is equal to"

    Text Solution

    |

  8. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  9. int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal t...

    Text Solution

    |

  10. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  11. If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (...

    Text Solution

    |

  12. int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

    Text Solution

    |

  13. intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e...

    Text Solution

    |

  14. int(3+2cosx)/((2+3cosx)^2)dx is equal to (a) ((sinx)/(3cosx+2))+c (b...

    Text Solution

    |

  15. "If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))...

    Text Solution

    |

  16. The value of the integral int((1-costheta)^(2/7))/((1+costheta)^(9/7))...

    Text Solution

    |

  17. If int(dx)/(sqrt(sin^(3)xcos^(5)x))=a sqrt(cot x)+bsqrt(tan^(3)x)+c, t...

    Text Solution

    |

  18. "I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

    Text Solution

    |

  19. If int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(2)|+btan^(-1)x+ 1/5log|x+2|+C,...

    Text Solution

    |

  20. Ifint(3e^x-5e^(-x))/(4e^x+5e^(-x))dx=a x+bln(4e^x+5e^(-x))+C ,t h e n ...

    Text Solution

    |