Home
Class 12
MATHS
"If "int x^(5)(1+x^(3))^(2//3)dx=A(1+x^(...

`"If "int x^(5)(1+x^(3))^(2//3)dx=A(1+x^(3))^(8//3)+B(1+x^(3))^(5//3)+c, " then " `

A

`A=(1)/(4),B=(1)/(5)`

B

`A=(1)/(8),B=-(1)/(5)`

C

`A=-(1)/(8),B=(1)/(5)`

D

non of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x^5 (1 + x^3)^{\frac{2}{3}} \, dx \) and express it in the form \( A(1 + x^3)^{\frac{8}{3}} + B(1 + x^3)^{\frac{5}{3}} + C \), we will follow these steps: ### Step 1: Substitution Let \( t = 1 + x^3 \). Then, we differentiate to find \( dx \): \[ dt = 3x^2 \, dx \implies dx = \frac{dt}{3x^2} \] Also, we can express \( x^2 \) in terms of \( t \): \[ x^3 = t - 1 \implies x = (t - 1)^{\frac{1}{3}} \implies x^2 = (t - 1)^{\frac{2}{3}} \] ### Step 2: Rewrite the Integral Now, substituting \( x^2 \) and \( dx \) into the integral: \[ \int x^5 (1 + x^3)^{\frac{2}{3}} \, dx = \int (t - 1)^{\frac{5}{3}} t^{\frac{2}{3}} \cdot \frac{dt}{3(t - 1)^{\frac{2}{3}}} \] This simplifies to: \[ \frac{1}{3} \int (t - 1)^{\frac{5}{3} - \frac{2}{3}} t^{\frac{2}{3}} \, dt = \frac{1}{3} \int (t - 1)^{1} t^{\frac{2}{3}} \, dt \] ### Step 3: Expand the Integral Now, expand \( (t - 1) t^{\frac{2}{3}} \): \[ (t - 1) t^{\frac{2}{3}} = t^{\frac{5}{3}} - t^{\frac{2}{3}} \] Thus, the integral becomes: \[ \frac{1}{3} \int (t^{\frac{5}{3}} - t^{\frac{2}{3}}) \, dt = \frac{1}{3} \left( \frac{3}{8} t^{\frac{8}{3}} - \frac{3}{5} t^{\frac{5}{3}} \right) + C \] ### Step 4: Simplify the Integral Simplifying gives: \[ \frac{1}{8} t^{\frac{8}{3}} - \frac{1}{5} t^{\frac{5}{3}} + C \] ### Step 5: Substitute Back Now substitute back \( t = 1 + x^3 \): \[ \frac{1}{8} (1 + x^3)^{\frac{8}{3}} - \frac{1}{5} (1 + x^3)^{\frac{5}{3}} + C \] ### Step 6: Identify Constants From the expression, we can identify: - \( A = \frac{1}{8} \) - \( B = -\frac{1}{5} \) - \( C = C \) ### Final Answer Thus, we have: \[ \int x^5 (1 + x^3)^{\frac{2}{3}} \, dx = \frac{1}{8} (1 + x^3)^{\frac{8}{3}} - \frac{1}{5} (1 + x^3)^{\frac{5}{3}} + C \]

To solve the integral \( \int x^5 (1 + x^3)^{\frac{2}{3}} \, dx \) and express it in the form \( A(1 + x^3)^{\frac{8}{3}} + B(1 + x^3)^{\frac{5}{3}} + C \), we will follow these steps: ### Step 1: Substitution Let \( t = 1 + x^3 \). Then, we differentiate to find \( dx \): \[ dt = 3x^2 \, dx \implies dx = \frac{dt}{3x^2} \] Also, we can express \( x^2 \) in terms of \( t \): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int3x^(1//2)(1+x^(3//2))dx

int x^3/(1+x^8) dx

int_(1)^(9)(x^((3)/(2))+2x+3)dx

int(1+x^(1/2)+x^(2/3))/(1+x^(1/3))dx

int((1)/(5+4x^(2))+a^(3x+2))dx

int(x^(3)-x^(2)+x-1)/(x-1)dx

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(3)) +d. then (where d is arbitrary constant)

If int (dx)/(x ^(4) (1+x^(3))^2)=a ln |(1+x ^(3))/(x ^(3))| +(b)/(x ^(3)) +(c)/(1+ x^(2)) +d. then (where d is arbitrary constant)

int[(x)^(1//3)-(1)/((x^())^(1//3))]dx is equal to :

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. int(sqrt(x^2+10 x+24))/(x+5)dx is equal to

    Text Solution

    |

  2. The value of int(1+logx)/(sqrt((x^(x))^(2)-1))dx " is "

    Text Solution

    |

  3. "If "int x^(5)(1+x^(3))^(2//3)dx=A(1+x^(3))^(8//3)+B(1+x^(3))^(5//3)+c...

    Text Solution

    |

  4. int(sin2x)/(sin^4x+cos^4x)d x

    Text Solution

    |

  5. int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is equal to"

    Text Solution

    |

  6. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  7. int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal t...

    Text Solution

    |

  8. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  9. If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (...

    Text Solution

    |

  10. int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

    Text Solution

    |

  11. intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e...

    Text Solution

    |

  12. int(3+2cosx)/((2+3cosx)^2)dx is equal to (a) ((sinx)/(3cosx+2))+c (b...

    Text Solution

    |

  13. "If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))...

    Text Solution

    |

  14. The value of the integral int((1-costheta)^(2/7))/((1+costheta)^(9/7))...

    Text Solution

    |

  15. If int(dx)/(sqrt(sin^(3)xcos^(5)x))=a sqrt(cot x)+bsqrt(tan^(3)x)+c, t...

    Text Solution

    |

  16. "I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

    Text Solution

    |

  17. If int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(2)|+btan^(-1)x+ 1/5log|x+2|+C,...

    Text Solution

    |

  18. Ifint(3e^x-5e^(-x))/(4e^x+5e^(-x))dx=a x+bln(4e^x+5e^(-x))+C ,t h e n ...

    Text Solution

    |

  19. If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

    Text Solution

    |

  20. int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

    Text Solution

    |