Home
Class 12
MATHS
int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is ...

` int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is equal to"`

A

`(1)/(sqrt3)"tan"^(-1)((x)/(sqrt(3(x+1))))`

B

`(2)/(sqrt3)"tan"^(-1)((x)/(sqrt(3(x+1))))`

C

`(2)/(sqrt3)"tan"^(-1)((x)/(sqrt(x+1)))`

D

non of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{x+2}{(x^2 + 3x + 3) \sqrt{x+1}} \, dx, \] we will use a substitution method. ### Step 1: Substitution Let \( t^2 = x + 1 \). Then, we have: \[ x = t^2 - 1 \quad \text{and} \quad dx = 2t \, dt. \] ### Step 2: Substitute in the integral Substituting \( x \) and \( dx \) into the integral: \[ \int \frac{(t^2 - 1) + 2}{((t^2 - 1)^2 + 3(t^2 - 1) + 3) \sqrt{t^2}} \cdot 2t \, dt. \] This simplifies to: \[ \int \frac{t^2 + 1}{((t^2 - 1)^2 + 3(t^2 - 1) + 3) t} \cdot 2t \, dt. \] ### Step 3: Simplify the denominator Now, we need to simplify the denominator: \[ (t^2 - 1)^2 + 3(t^2 - 1) + 3 = t^4 - 2t^2 + 1 + 3t^2 - 3 + 3 = t^4 + t^2 + 1. \] So, the integral becomes: \[ 2 \int \frac{t^2 + 1}{t^4 + t^2 + 1} \, dt. \] ### Step 4: Split the integral We can split the integral: \[ 2 \int \frac{t^2}{t^4 + t^2 + 1} \, dt + 2 \int \frac{1}{t^4 + t^2 + 1} \, dt. \] ### Step 5: Further simplification For the first integral, we can use the substitution \( u = t^2 \), which gives \( du = 2t \, dt \) or \( dt = \frac{du}{2\sqrt{u}} \): \[ \int \frac{u}{u^2 + u + 1} \frac{du}{2\sqrt{u}}. \] And for the second integral, we can use a trigonometric substitution or partial fraction decomposition. ### Step 6: Solve the integrals After working through the integrals, we will arrive at: \[ \int \frac{1}{t^4 + t^2 + 1} \, dt = \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{t - \frac{1}{t}}{\sqrt{3}} \right) + C. \] ### Step 7: Back substitute Finally, we substitute back \( t = \sqrt{x + 1} \): \[ \int \frac{x+2}{(x^2 + 3x + 3) \sqrt{x+1}} \, dx = \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{\sqrt{x + 1} - \frac{1}{\sqrt{x + 1}}}{\sqrt{3}} \right) + C. \] ### Final Answer Thus, the integral evaluates to: \[ \frac{2}{\sqrt{3}} \tan^{-1} \left( \frac{\sqrt{x + 1} - \frac{1}{\sqrt{x + 1}}}{\sqrt{3}} \right) + C. \]

To solve the integral \[ \int \frac{x+2}{(x^2 + 3x + 3) \sqrt{x+1}} \, dx, \] we will use a substitution method. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (x^2-2)/(x^3 sqrt(x^2-1)) dx is equal to

int(sqrt(x-1))/(x sqrt(x+1))dx " is equal to "

int(1+x)/(1+3sqrt(x))dx is equal to

int ( 1+ x + sqrt( x+ x^(2)))/(( sqrt(x) + sqrt( 1+x))dx is equal to

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

int(x-1)/((x+1)sqrt(x^(3)+x^(2)+x))dx is equal to

If int(x^(5))/(sqrt(1+x^(3)))dx is equal to

int(x+sqrt(x+1))/(x+2) dx is equal to:

int_(-3)^(3)(x^(2))/((x^(2)+3)(1+e^(x)))dx is equal to

int(x^(3))/((1+x^(2))^(1//3))dx is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. "If "int x^(5)(1+x^(3))^(2//3)dx=A(1+x^(3))^(8//3)+B(1+x^(3))^(5//3)+c...

    Text Solution

    |

  2. int(sin2x)/(sin^4x+cos^4x)d x

    Text Solution

    |

  3. int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is equal to"

    Text Solution

    |

  4. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  5. int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal t...

    Text Solution

    |

  6. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  7. If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (...

    Text Solution

    |

  8. int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

    Text Solution

    |

  9. intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e...

    Text Solution

    |

  10. int(3+2cosx)/((2+3cosx)^2)dx is equal to (a) ((sinx)/(3cosx+2))+c (b...

    Text Solution

    |

  11. "If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))...

    Text Solution

    |

  12. The value of the integral int((1-costheta)^(2/7))/((1+costheta)^(9/7))...

    Text Solution

    |

  13. If int(dx)/(sqrt(sin^(3)xcos^(5)x))=a sqrt(cot x)+bsqrt(tan^(3)x)+c, t...

    Text Solution

    |

  14. "I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

    Text Solution

    |

  15. If int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(2)|+btan^(-1)x+ 1/5log|x+2|+C,...

    Text Solution

    |

  16. Ifint(3e^x-5e^(-x))/(4e^x+5e^(-x))dx=a x+bln(4e^x+5e^(-x))+C ,t h e n ...

    Text Solution

    |

  17. If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

    Text Solution

    |

  18. int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

    Text Solution

    |

  19. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b , th...

    Text Solution

    |

  20. The value of the integral int(x^2+x)(x^(-8)+2x^(-9))^(1/(10))dx is 5/(...

    Text Solution

    |