Home
Class 12
MATHS
int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))d...

`int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) ` is equal to

A

`log_(e)|1+e^(x)sinx|+c`

B

`log_(e)|e^(x)+cosx|+c`

C

`log_(e)|1+e^(x)cosx|-x+c`

D

`log_(e)|1+e^(x)cosx|+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{\cos(2x)}{(e^{-x} + \cos x) \sqrt{1 + \sin(2x)}} \, dx \] we will follow these steps: ### Step 1: Simplify the integrand We start by rewriting the expression in the denominator. Notice that: \[ \sqrt{1 + \sin(2x)} = \sqrt{1 + 2\sin x \cos x} = \sqrt{(\sin x + \cos x)^2} = |\sin x + \cos x| \] Since \(x\) is in the interval \((0, \frac{\pi}{2})\), both \(\sin x\) and \(\cos x\) are non-negative, so we can drop the absolute value: \[ \sqrt{1 + \sin(2x)} = \sin x + \cos x \] Thus, the integral becomes: \[ I = \int \frac{\cos(2x)}{(e^{-x} + \cos x)(\sin x + \cos x)} \, dx \] ### Step 2: Rewrite \(\cos(2x)\) Using the double angle formula, we have: \[ \cos(2x) = \cos^2 x - \sin^2 x \] This allows us to express the integral as: \[ I = \int \frac{\cos^2 x - \sin^2 x}{(e^{-x} + \cos x)(\sin x + \cos x)} \, dx \] ### Step 3: Substitute \(e^{-x}\) We can rewrite \(e^{-x}\) as \(\frac{1}{e^x}\) to simplify the expression: \[ I = \int \frac{\cos^2 x - \sin^2 x}{\left(\frac{1}{e^x} + \cos x\right)(\sin x + \cos x)} \, dx \] Multiplying the numerator and denominator by \(e^x\) gives: \[ I = \int \frac{e^x(\cos^2 x - \sin^2 x)}{(1 + e^x \cos x)(\sin x + \cos x)} \, dx \] ### Step 4: Use substitution Let \(t = 1 + e^x \cos x\). Then, we need to find \(dt\): \[ dt = e^x \cos x \, dx - e^x \sin x \, dx \] This implies: \[ dt = e^x (\cos x - \sin x) \, dx \] Rearranging gives: \[ dx = \frac{dt}{e^x (\cos x - \sin x)} \] ### Step 5: Substitute back into the integral Now we can substitute \(dx\) back into the integral: \[ I = \int \frac{e^x(\cos^2 x - \sin^2 x)}{t(\sin x + \cos x)} \cdot \frac{dt}{e^x (\cos x - \sin x)} \] This simplifies to: \[ I = \int \frac{\cos^2 x - \sin^2 x}{t(\sin x + \cos x)(\cos x - \sin x)} \, dt \] ### Step 6: Solve the integral Now we can integrate: \[ I = \ln |t| + C = \ln |1 + e^x \cos x| + C \] ### Final Result Thus, the final answer for the integral is: \[ I = \ln(1 + e^x \cos x) + C \]

To solve the integral \[ I = \int \frac{\cos(2x)}{(e^{-x} + \cos x) \sqrt{1 + \sin(2x)}} \, dx \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(sinx+cosx)/(sqrt(1+sin2x))dx

int (sinx+cosx)/sqrt(1+sin2x)dx .

If I_(1)=int_(0)^((pi)/(2))e^(sinx)(1+x cos x)dx and I_(2)=int_(0)^((pi)/(2))e^(cosx)(1-x sin x)dx, then [(I_(1))/(I_(2))] is equal to (where [x] denotes the greatest integer less than or equal to x)

int(sinx-cosx)/(sqrt(1-sin2x))e^(sinx)cosx dx is equal to

If A = int_(0)^((pi)/(2))(sin^(3)x)/(1+cos^(2)s)dx and B=int_(0)^((pi)/(2))(cos^(2)x)/(1+sin^(2)x)dx , then (2A)/(B) is equal to

int(cos2x)/((sinx+cosx)^(2))dx is equal to

Evaluate: int(sinx+cosx)/(sqrt(1-sin2x))\ dx

Evaluate: int(sinx+cosx)/(sqrt(1-sin2x))\ dx

Evaluate: int(sinx+cosx)/(sqrt(1-sin2x))\ dx

If 2y=(cot^(-1)((sqrt3 cos x + sin x)/(cos x - sqrt3 sin x)))^(2) , x in (0, pi/2) " then " (dy)/(dx) is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. int(x+2)/((x^(2)+3x+3)sqrt(x+1))dx " is equal to"

    Text Solution

    |

  2. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  3. int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal t...

    Text Solution

    |

  4. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  5. If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (...

    Text Solution

    |

  6. int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

    Text Solution

    |

  7. intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e...

    Text Solution

    |

  8. int(3+2cosx)/((2+3cosx)^2)dx is equal to (a) ((sinx)/(3cosx+2))+c (b...

    Text Solution

    |

  9. "If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))...

    Text Solution

    |

  10. The value of the integral int((1-costheta)^(2/7))/((1+costheta)^(9/7))...

    Text Solution

    |

  11. If int(dx)/(sqrt(sin^(3)xcos^(5)x))=a sqrt(cot x)+bsqrt(tan^(3)x)+c, t...

    Text Solution

    |

  12. "I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

    Text Solution

    |

  13. If int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(2)|+btan^(-1)x+ 1/5log|x+2|+C,...

    Text Solution

    |

  14. Ifint(3e^x-5e^(-x))/(4e^x+5e^(-x))dx=a x+bln(4e^x+5e^(-x))+C ,t h e n ...

    Text Solution

    |

  15. If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

    Text Solution

    |

  16. int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

    Text Solution

    |

  17. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b , th...

    Text Solution

    |

  18. The value of the integral int(x^2+x)(x^(-8)+2x^(-9))^(1/(10))dx is 5/(...

    Text Solution

    |

  19. int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3...

    Text Solution

    |

  20. If I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2)), then I equals

    Text Solution

    |