Home
Class 12
MATHS
int(cos4x-1)/(cotx-tanx)dx is equal to...

`int(cos4x-1)/(cotx-tanx)dx` is equal to

A

`(1)/(2)In|sec2x|-(1)/(4)cos^(2)2x+c`

B

`(1)/(2)In|sec2x|+(1)/(4)cos^(2)x+c`

C

`(1)/(2)In|cos2x|-(1)/(4)cos^(2)2x+c`

D

`(1)/(2)In|cos2x|+(1)/(4)cos^(2)x+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cos 4x - 1}{\cot x - \tan x} \, dx \), we can follow these steps: ### Step 1: Simplify the numerator We know that \( \cos 4x \) can be expressed using the double angle formula: \[ \cos 4x = 2\cos^2 2x - 1 \] Thus, we can rewrite \( \cos 4x - 1 \): \[ \cos 4x - 1 = 2\cos^2 2x - 1 - 1 = 2\cos^2 2x - 2 = 2(\cos^2 2x - 1) = 2(-\sin^2 2x) = -2\sin^2 2x \] ### Step 2: Simplify the denominator The denominator \( \cot x - \tan x \) can be rewritten using sine and cosine: \[ \cot x = \frac{\cos x}{\sin x}, \quad \tan x = \frac{\sin x}{\cos x} \] Thus, \[ \cot x - \tan x = \frac{\cos x}{\sin x} - \frac{\sin x}{\cos x} = \frac{\cos^2 x - \sin^2 x}{\sin x \cos x} \] Using the identity \( \cos^2 x - \sin^2 x = \cos 2x \), we can write: \[ \cot x - \tan x = \frac{\cos 2x}{\sin x \cos x} \] ### Step 3: Substitute into the integral Now substituting back into the integral: \[ \int \frac{-2\sin^2 2x}{\frac{\cos 2x}{\sin x \cos x}} \, dx = -2 \int \frac{\sin^2 2x \cdot \sin x \cos x}{\cos 2x} \, dx \] ### Step 4: Use trigonometric identities Using the identity \( \sin^2 2x = 1 - \cos^2 2x \): \[ -2 \int \frac{(1 - \cos^2 2x) \sin x \cos x}{\cos 2x} \, dx \] This can be separated into two integrals: \[ -2 \left( \int \frac{\sin x \cos x}{\cos 2x} \, dx - \int \frac{\sin x \cos^3 2x}{\cos 2x} \, dx \right) \] ### Step 5: Use substitution Let \( t = \cos 2x \), then \( dt = -2\sin 2x \, dx \) or \( dx = \frac{dt}{-2\sin 2x} \). Thus: \[ \sin 2x = 2\sin x \cos x \] Substituting gives: \[ -2 \int \frac{\sin x \cos x}{t} \cdot \frac{dt}{-2(2\sin x \cos x)} = \int \frac{dt}{t} \] ### Step 6: Solve the integral The integral \( \int \frac{dt}{t} \) is: \[ \log |t| + C = \log |\cos 2x| + C \] ### Final Result Thus, the final answer is: \[ \int \frac{\cos 4x - 1}{\cot x - \tan x} \, dx = -\frac{1}{2} \log |\cos 2x| + C \]

To solve the integral \( \int \frac{\cos 4x - 1}{\cot x - \tan x} \, dx \), we can follow these steps: ### Step 1: Simplify the numerator We know that \( \cos 4x \) can be expressed using the double angle formula: \[ \cos 4x = 2\cos^2 2x - 1 \] Thus, we can rewrite \( \cos 4x - 1 \): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(cos 4x-1)/(cot x-tanx)dx is equal to

int(1+cos4x)/(cotx-tanx)dx

int(1+cos4x)/(cotx-tanx)\ dx

If int(cos4x+1)/(cotx-tanx)dx = Acos4x+B ,t h e n (a) A=-1/8 (b) B=1/2 (c) f(x) has fundamental period pi/2 (d) f(x) is an odd function

"If " int(cos 4x+1)/(cotx-tanx)dx=Acos4x+B, " then "

int(sqrt(tanx)+sqrt(cotx))dx is equal to

inte^(-x)(1-tanx)secx dx is equal to

inte^(tanx)(secx-sinx)dx is equal to

If int (cos4x+1)/(cotx-tanx)dx=Af(x)+B, then

int1/(cos^6x+sin^6x)dx is equal to (A) tan^-1(tanx-cotx)+c (B) sin^-1(sin2x)+c (C) tan^-1(tanx+cotx)+c (D) cot^-1(tanx+cotx)+c

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Evaluate the following Integrals : int (sec x .dx)/(sqrt(sin (x+2A...

    Text Solution

    |

  2. int(cos2x)/((e^(-x)+cosx)sqrt(1+sin2x))dx,x in(0,(pi)/(2)) is equal t...

    Text Solution

    |

  3. int(cos4x-1)/(cotx-tanx)dx is equal to

    Text Solution

    |

  4. If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (...

    Text Solution

    |

  5. int sqrt((cosx-cos^3x)/(1-cos^3x))dx is equal to

    Text Solution

    |

  6. intx((lna^(x/2)/(3a^((5x)/2)b^(3x))+(lnb^b^x)/(2a^(2x)b^(4x)))dx(w h e...

    Text Solution

    |

  7. int(3+2cosx)/((2+3cosx)^2)dx is equal to (a) ((sinx)/(3cosx+2))+c (b...

    Text Solution

    |

  8. "If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))...

    Text Solution

    |

  9. The value of the integral int((1-costheta)^(2/7))/((1+costheta)^(9/7))...

    Text Solution

    |

  10. If int(dx)/(sqrt(sin^(3)xcos^(5)x))=a sqrt(cot x)+bsqrt(tan^(3)x)+c, t...

    Text Solution

    |

  11. "I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

    Text Solution

    |

  12. If int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(2)|+btan^(-1)x+ 1/5log|x+2|+C,...

    Text Solution

    |

  13. Ifint(3e^x-5e^(-x))/(4e^x+5e^(-x))dx=a x+bln(4e^x+5e^(-x))+C ,t h e n ...

    Text Solution

    |

  14. If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

    Text Solution

    |

  15. int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

    Text Solution

    |

  16. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b , th...

    Text Solution

    |

  17. The value of the integral int(x^2+x)(x^(-8)+2x^(-9))^(1/(10))dx is 5/(...

    Text Solution

    |

  18. int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3...

    Text Solution

    |

  19. If I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2)), then I equals

    Text Solution

    |

  20. int((x^4-1)dx)/(x^2sqrt(x^4+x^2+1))

    Text Solution

    |