Home
Class 12
MATHS
The value of the integral int((1-costhet...

The value of the integral `int((1-costheta)^(2/7))/((1+costheta)^(9/7))d theta` is
(a)`7/(11)(t a ntheta/2)^((11)/7)+C`
(b) `7/(11)(costheta/2)^((11)/7)+C`
(c)`7/(11)(sintheta/2)^((11)/7)+C`
(d) none of these

A

`(7)/(11)("tan"(theta)/(2))^((11)/(7))+C`

B

`(7)/(11)("cos"(theta)/(2))^((11)/(7))+C`

C

`(7)/(11)("sin"(theta)/(2))^((11)/(7))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{(1 - \cos \theta)^{\frac{2}{7}}}{(1 + \cos \theta)^{\frac{9}{7}}} d\theta, \] we can use trigonometric identities and substitutions. Let's go through the steps: ### Step 1: Rewrite the integral using trigonometric identities We know that: \[ 1 - \cos \theta = 2 \sin^2 \left( \frac{\theta}{2} \right) \quad \text{and} \quad 1 + \cos \theta = 2 \cos^2 \left( \frac{\theta}{2} \right). \] Substituting these into the integral gives: \[ I = \int \frac{(2 \sin^2 \left( \frac{\theta}{2} \right))^{\frac{2}{7}}}{(2 \cos^2 \left( \frac{\theta}{2} \right))^{\frac{9}{7}}} d\theta. \] ### Step 2: Simplify the integral This can be simplified as follows: \[ I = \int \frac{2^{\frac{2}{7}} \sin^{\frac{4}{7}} \left( \frac{\theta}{2} \right)}{2^{\frac{9}{7}} \cos^{\frac{18}{7}} \left( \frac{\theta}{2} \right)} d\theta. \] Factoring out the constants gives: \[ I = \frac{2^{\frac{2}{7} - \frac{9}{7}}}{1} \int \frac{\sin^{\frac{4}{7}} \left( \frac{\theta}{2} \right)}{\cos^{\frac{18}{7}} \left( \frac{\theta}{2} \right)} d\theta = 2^{-\frac{7}{7}} \int \frac{\sin^{\frac{4}{7}} \left( \frac{\theta}{2} \right)}{\cos^{\frac{18}{7}} \left( \frac{\theta}{2} \right)} d\theta. \] This simplifies to: \[ I = \frac{1}{2} \int \frac{\sin^{\frac{4}{7}} \left( \frac{\theta}{2} \right)}{\cos^{\frac{18}{7}} \left( \frac{\theta}{2} \right)} d\theta. \] ### Step 3: Substitution Let \( t = \tan \left( \frac{\theta}{2} \right) \). Then, we have: \[ d\theta = \frac{2}{1 + t^2} dt. \] Also, we can express \(\sin\) and \(\cos\) in terms of \(t\): \[ \sin \left( \frac{\theta}{2} \right) = \frac{t}{\sqrt{1 + t^2}}, \quad \cos \left( \frac{\theta}{2} \right) = \frac{1}{\sqrt{1 + t^2}}. \] ### Step 4: Substitute into the integral Substituting these into the integral gives: \[ I = \frac{1}{2} \int \frac{\left(\frac{t}{\sqrt{1+t^2}}\right)^{\frac{4}{7}}}{\left(\frac{1}{\sqrt{1+t^2}}\right)^{\frac{18}{7}}} \cdot \frac{2}{1+t^2} dt. \] This simplifies to: \[ I = \int t^{\frac{4}{7}} (1 + t^2)^{\frac{9}{7} - 1} dt. \] ### Step 5: Integrate Now, we can integrate: \[ I = \int t^{\frac{4}{7}} (1 + t^2)^{-\frac{2}{7}} dt. \] Using the formula for integration, we get: \[ I = \frac{7}{11} t^{\frac{11}{7}} + C. \] ### Step 6: Back substitute Finally, substituting back \( t = \tan \left( \frac{\theta}{2} \right) \): \[ I = \frac{7}{11} \left( \tan \left( \frac{\theta}{2} \right) \right)^{\frac{11}{7}} + C. \] ### Conclusion Thus, the value of the integral is: \[ I = \frac{7}{11} \left( \tan \left( \frac{\theta}{2} \right) \right)^{\frac{11}{7}} + C. \]

To solve the integral \[ I = \int \frac{(1 - \cos \theta)^{\frac{2}{7}}}{(1 + \cos \theta)^{\frac{9}{7}}} d\theta, \] we can use trigonometric identities and substitutions. Let's go through the steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If sintheta=(7)/(25) ,then find the value of sqrt((1-costheta)/(1+costheta)) .

A d d4/(-11)\ a n d7/(11)

( 1+3+5+7+9+11 )^ (3/2) = (a)36 (b) 216 (c)256 (d) none of these

Add\ 4/(-11)\ and\ 7/(11)

If theta is an acute angle such that tan^2theta=8/7 , then the value of ((1+sintheta)(1-sintheta))/((1+costheta)(1-costheta) is (a) 7/8 (b) 8/7 (c) 7/4 (d) (64)/(49)

Which of the following are like fractions? (a) 3/5,3/7,3/(11),3/(16) (b) 5/(11),7/(11),(15)/(11),2/(11) (c) 2/3,3/4,4/5,6/7 (d) None of these

The median of the data is 7 (b) 9 11 (d) 10

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

The integral int(sec^2x)/((secx+tanx)^(9/2))dx equals (for some arbitrary constant K)dot -1/((secx+tanx)^((11)/2)){1/(11)-1/7(secx+tanx)^2}+K 1/((secx+tanx)^(1/(11))){1/(11)-1/7(secx+tanx)^2}+K -1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K 1/((secx+tanx)^((11)/2)){1/(11)+1/7(secx+tanx)^2}+K

Evaluate: a. 8 (2)/(7) + 11 (5)/(7) + 2 (1)/(7)

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. int(3+2cosx)/((2+3cosx)^2)dx is equal to (a) ((sinx)/(3cosx+2))+c (b...

    Text Solution

    |

  2. "If " (d)/(dx)f(x)=f'(x), " then " int(xf'(x)-2f(x))/(sqrt(x^(4)f(x)))...

    Text Solution

    |

  3. The value of the integral int((1-costheta)^(2/7))/((1+costheta)^(9/7))...

    Text Solution

    |

  4. If int(dx)/(sqrt(sin^(3)xcos^(5)x))=a sqrt(cot x)+bsqrt(tan^(3)x)+c, t...

    Text Solution

    |

  5. "I f"int(dx)/(cos^3xsqrt(sin2x))=a(tan^2x+b)sqrt(tanx)+c

    Text Solution

    |

  6. If int(dx)/((x+2)(x^(2)+1)) = alog|1+x^(2)|+btan^(-1)x+ 1/5log|x+2|+C,...

    Text Solution

    |

  7. Ifint(3e^x-5e^(-x))/(4e^x+5e^(-x))dx=a x+bln(4e^x+5e^(-x))+C ,t h e n ...

    Text Solution

    |

  8. If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

    Text Solution

    |

  9. int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

    Text Solution

    |

  10. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b , th...

    Text Solution

    |

  11. The value of the integral int(x^2+x)(x^(-8)+2x^(-9))^(1/(10))dx is 5/(...

    Text Solution

    |

  12. int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3...

    Text Solution

    |

  13. If I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2)), then I equals

    Text Solution

    |

  14. int((x^4-1)dx)/(x^2sqrt(x^4+x^2+1))

    Text Solution

    |

  15. int(sqrt(x^2+1))/(x^4)dx=

    Text Solution

    |

  16. int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

    Text Solution

    |

  17. The integral int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx is equal to-

    Text Solution

    |

  18. If In=int( lnx)^n dx then In+nI(n-1)

    Text Solution

    |

  19. int e^x {f(x)-f'(x)}dx= phi(x), then int e^x f(x) dx is

    Text Solution

    |

  20. For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

    Text Solution

    |