Home
Class 12
MATHS
If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x...

If `int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b` , then a is equal

A

`1//3`

B

`2//3`

C

`-1//3`

D

`-2//3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{1}{x \sqrt{1 - x^3}} \, dx \] we will follow these steps: ### Step 1: Multiply and Divide by \(x^2\) We can rewrite the integral by multiplying and dividing by \(x^2\): \[ I = \int \frac{x^2}{x^3 \sqrt{1 - x^3}} \, dx \] ### Step 2: Substitute \(1 - x^3 = y^2\) Let \(1 - x^3 = y^2\). Then, differentiating both sides gives: \[ -3x^2 \, dx = 2y \, dy \quad \Rightarrow \quad x^2 \, dx = -\frac{2y}{3} \, dy \] ### Step 3: Express \(x^3\) in terms of \(y\) From the substitution, we have: \[ x^3 = 1 - y^2 \] ### Step 4: Substitute into the Integral Now, substituting \(x^2 \, dx\) and \(x^3\) into the integral, we get: \[ I = \int \frac{-\frac{2y}{3} \, dy}{(1 - y^2) \sqrt{y^2}} = -\frac{2}{3} \int \frac{y \, dy}{(1 - y^2) y} = -\frac{2}{3} \int \frac{1}{1 - y^2} \, dy \] ### Step 5: Simplify the Integral The integral simplifies to: \[ I = -\frac{2}{3} \int \frac{1}{1 - y^2} \, dy \] ### Step 6: Use Partial Fraction Decomposition We can express \(\frac{1}{1 - y^2}\) as: \[ \frac{1}{1 - y^2} = \frac{1}{(y - 1)(y + 1)} = \frac{A}{y - 1} + \frac{B}{y + 1} \] Solving for \(A\) and \(B\) gives: \[ A + B = 0 \quad \text{and} \quad A - B = 1 \] From these equations, we find \(A = \frac{1}{2}\) and \(B = -\frac{1}{2}\). ### Step 7: Integrate Now we can rewrite the integral: \[ I = -\frac{2}{3} \left( \frac{1}{2} \int \frac{1}{y - 1} \, dy - \frac{1}{2} \int \frac{1}{y + 1} \, dy \right) \] Integrating gives: \[ I = -\frac{2}{3} \left( \frac{1}{2} \log |y - 1| - \frac{1}{2} \log |y + 1| \right) + C \] This simplifies to: \[ I = -\frac{1}{3} \log \left| \frac{y - 1}{y + 1} \right| + C \] ### Step 8: Substitute Back for \(y\) Substituting back \(y = \sqrt{1 - x^3}\): \[ I = -\frac{1}{3} \log \left| \frac{\sqrt{1 - x^3} - 1}{\sqrt{1 - x^3} + 1} \right| + C \] ### Step 9: Compare with Given Expression The given expression is: \[ I = a \log \left| \frac{\sqrt{1 - x^3} - 1}{\sqrt{1 - x^3} + 1} \right| + b \] By comparing, we find: \[ a = -\frac{1}{3} \] ### Conclusion Thus, the value of \(a\) is: \[ \boxed{-\frac{1}{3}} \]

To solve the integral \[ I = \int \frac{1}{x \sqrt{1 - x^3}} \, dx \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int1/xsqrt((1-x)/(1+x))dx

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

int(1)/(sqrt(x^(2)+3x+1))dx

int((1+x)^3)/(3sqrt(x^2))dx

int1/(sqrt(x+1)+sqrt(x))dx

Evaluate: int1/(xsqrt(1+x^3))\ dx

If y=sin^(-1)(xsqrt(1-x)+sqrt(x)sqrt(1-x^2)) and (dy)/(dx)=1/(2sqrt(x(1-x)))+p , then p is equal to 0 (b) 1/(sqrt(1-x)) sin^(-1)sqrt(x) (d) 1/(sqrt(1-x^2))

int1/(sqrt(x+1)+sqrt(x))\ dx

int1/(sqrt(x+a)+sqrt(x+b))dx

int(x^2-1)/(xsqrt(x^4+3x^2+1) dx is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. If intf(x)sinxcosxdx=1/(2(b^2-a^2))lnf(x)+c ,then f(x) is equal to

    Text Solution

    |

  2. int(x^(9))/((4x^(2)+ 1)^(6))dx is equal to

    Text Solution

    |

  3. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b , th...

    Text Solution

    |

  4. The value of the integral int(x^2+x)(x^(-8)+2x^(-9))^(1/(10))dx is 5/(...

    Text Solution

    |

  5. int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3...

    Text Solution

    |

  6. If I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2)), then I equals

    Text Solution

    |

  7. int((x^4-1)dx)/(x^2sqrt(x^4+x^2+1))

    Text Solution

    |

  8. int(sqrt(x^2+1))/(x^4)dx=

    Text Solution

    |

  9. int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

    Text Solution

    |

  10. The integral int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx is equal to-

    Text Solution

    |

  11. If In=int( lnx)^n dx then In+nI(n-1)

    Text Solution

    |

  12. int e^x {f(x)-f'(x)}dx= phi(x), then int e^x f(x) dx is

    Text Solution

    |

  13. For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

    Text Solution

    |

  14. If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x...

    Text Solution

    |

  15. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  16. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  17. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  18. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  19. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  20. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |