Home
Class 12
MATHS
int(x^3dx)/(sqrt(1+x^2))i se q u a lto ...

`int(x^3dx)/(sqrt(1+x^2))i se q u a lto` `1/3sqrt(1+x^2)(2+x^2)+C` `1/3sqrt(1+x^2)(x^2-1)+C` `1/3(1+x^2)^(3/2)+C` (d) `1/3sqrt(1+x^2)(x^2-2)+C`

A

`(1)/(3)sqrt(1+x^(2))(2+x^(2))+C`

B

`(1)/(3)sqrt(1+x^(2))(x^(2)-1)+C`

C

`(1)/(3)(1+x^(2))^(3//2)+C`

D

`(1)/(3)sqrt(1+x^(2))(x^(2)-2)+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{x^3}{\sqrt{1+x^2}} \, dx \), we can follow these steps: ### Step 1: Substitute \( t = \sqrt{1+x^2} \) Let \( t = \sqrt{1+x^2} \). Then, squaring both sides gives us: \[ t^2 = 1 + x^2 \implies x^2 = t^2 - 1 \] Next, we differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = \frac{x}{\sqrt{1+x^2}} \implies dt = \frac{x}{\sqrt{1+x^2}} \, dx \implies dx = \frac{\sqrt{1+x^2}}{x} \, dt \] ### Step 2: Rewrite the integral Now we can express \( x^3 \) in terms of \( t \): \[ x^3 = x \cdot x^2 = x(t^2 - 1) \] Substituting \( dx \) and \( x^3 \) into the integral gives: \[ \int \frac{x(t^2 - 1)}{t} \cdot \frac{\sqrt{1+x^2}}{x} \, dt = \int (t^2 - 1) \, dt \] ### Step 3: Simplify the integral The integral simplifies to: \[ \int (t^2 - 1) \, dt = \int t^2 \, dt - \int 1 \, dt \] Calculating these integrals: \[ \int t^2 \, dt = \frac{t^3}{3} \quad \text{and} \quad \int 1 \, dt = t \] Thus, we have: \[ \int (t^2 - 1) \, dt = \frac{t^3}{3} - t + C \] ### Step 4: Substitute back for \( t \) Now we substitute back \( t = \sqrt{1+x^2} \): \[ \frac{(\sqrt{1+x^2})^3}{3} - \sqrt{1+x^2} + C = \frac{(1+x^2)^{3/2}}{3} - \sqrt{1+x^2} + C \] ### Final Answer The final answer is: \[ \frac{(1+x^2)^{3/2}}{3} - \sqrt{1+x^2} + C \]

To solve the integral \( \int \frac{x^3}{\sqrt{1+x^2}} \, dx \), we can follow these steps: ### Step 1: Substitute \( t = \sqrt{1+x^2} \) Let \( t = \sqrt{1+x^2} \). Then, squaring both sides gives us: \[ t^2 = 1 + x^2 \implies x^2 = t^2 - 1 \] Next, we differentiate \( t \) with respect to \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(x^3dx)/(sqrt(1+x^2)) is equal to (A) 1/3sqrt(1+x^2)(2+x^2)+C (B) 1/3sqrt(1+x^2)(x^2-1)+C (C) 1/3(1+x^2)^(3/2)+C (D) 1/3sqrt(1+x^2)(x^2-2)+C

int(2x+3)/sqrt(1+x+x^2)dx

int(x+1)/(sqrt(2x^(2)+x-3))dx

int(1)/(sqrt(2x^(2)+3x-2))dx

The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi se q u a lto e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^3)))+c e^x(1/(sqrt(1+x^2))-1/(sqrt((1+x^2)^3)))+c e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))+c none of these

Choose the correct answer intsqrt(1+x^2)dx is equal to(A) x/2sqrt(1+x^2)+1/2log|(x+sqrt(x+x^2))|+C (B) 2/3(1+x^2)^(3/2)+C (C) 2/3x(1+x^2)^(3/2)+C (D) (x^2)/2sqrt(1+x^2)+1/2x^2log|x+sqrt(1+x^2)|+C

IfI=int(dx)/(x^3sqrt(x^2-1)),t h e nIe q u a l s a. 1/2((sqrt(x^2-1))/(x^3)+tan^(-1)sqrt(x^2-1))+C b. 1/2((sqrt(x^2-1))/(x^2)+xtan^(-1)sqrt(x^2-1))+C c. 1/2((sqrt(x^2-1))/x+tan^(-1)sqrt(x^2-1))+C d. 1/2((sqrt(x^2-1))/(x^2)+tan^(-1)sqrt(x^2-1))+C

The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)))dx is equal to (a)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^3)))+c (b)e^x(1/(sqrt(1+x^2))-x/(sqrt((1+x^2)^3)))+c (c)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^5)))+c (d)none of these

int(dx)/((1+sqrt(x))sqrt((x-x^2))) is equal to (a) (1+sqrt(x))/((1-x)^2)+c (b) (1+sqrt(x))/((1+x)^2)+c (c) (1-sqrt(x))/((1-x)^2)+c (d) (2(sqrt(x)-1))/(sqrt((1-x)))+c

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. If int1/(xsqrt(1-x^3))dx=alog|(sqrt(1-x^3)-1)/(sqrt(1-x^3)+1)|+b , th...

    Text Solution

    |

  2. The value of the integral int(x^2+x)(x^(-8)+2x^(-9))^(1/(10))dx is 5/(...

    Text Solution

    |

  3. int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3...

    Text Solution

    |

  4. If I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2)), then I equals

    Text Solution

    |

  5. int((x^4-1)dx)/(x^2sqrt(x^4+x^2+1))

    Text Solution

    |

  6. int(sqrt(x^2+1))/(x^4)dx=

    Text Solution

    |

  7. int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

    Text Solution

    |

  8. The integral int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx is equal to-

    Text Solution

    |

  9. If In=int( lnx)^n dx then In+nI(n-1)

    Text Solution

    |

  10. int e^x {f(x)-f'(x)}dx= phi(x), then int e^x f(x) dx is

    Text Solution

    |

  11. For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

    Text Solution

    |

  12. If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x...

    Text Solution

    |

  13. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  14. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  15. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  16. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  17. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  18. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  19. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  20. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |