Home
Class 12
MATHS
If I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2)...

If `I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2))`, then I equals

A

` (x)/(sqrt(a^(2)-b^(2)x^(2)))+C`

B

` (x)/(a^(2)sqrt(a^(2)-b^(2)x^(2)))+C`

C

` (a x)/(sqrt(a^(2)-b^(2)x^(2)))+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{dx}{(a^2 - b^2 x^2)^{3/2}} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{(a^2 - b^2 x^2)^{3/2}} \] ### Step 2: Factor out \( x^2 \) We can rewrite the denominator by factoring out \( x^2 \): \[ I = \int \frac{dx}{(a^2(1 - \frac{b^2}{a^2} x^2))^{3/2}} \] This simplifies to: \[ I = \int \frac{dx}{a^3 (1 - \frac{b^2}{a^2} x^2)^{3/2}} \] ### Step 3: Substitute for \( t \) Let \( t = a^2 - b^2 x^2 \). Then, differentiating both sides gives: \[ dt = -2b^2 x \, dx \quad \Rightarrow \quad dx = \frac{dt}{-2b^2 x} \] We also have \( x^2 = \frac{a^2 - t}{b^2} \), hence \( x = \sqrt{\frac{a^2 - t}{b^2}} \). ### Step 4: Substitute \( dx \) into the Integral Substituting \( dx \) into the integral gives: \[ I = \int \frac{1}{(t)^{3/2}} \cdot \frac{dt}{-2b^2 \sqrt{\frac{a^2 - t}{b^2}}} \] This simplifies to: \[ I = -\frac{1}{2b^2} \int \frac{dt}{(t)^{3/2} \sqrt{\frac{a^2 - t}{b^2}}} \] ### Step 5: Simplify the Integral This integral can be simplified further. We can factor out constants: \[ I = -\frac{b}{2} \int \frac{dt}{(t)^{3/2} \sqrt{a^2 - t}} \] ### Step 6: Solve the Integral The integral \( \int \frac{dt}{(t)^{3/2} \sqrt{a^2 - t}} \) can be solved using standard integration techniques. The result is: \[ I = -\frac{b}{2} \cdot \left(-\frac{2}{\sqrt{a^2 - t}} + C\right) \] ### Step 7: Substitute Back for \( t \) Substituting back \( t = a^2 - b^2 x^2 \): \[ I = \frac{b}{\sqrt{a^2 - b^2 x^2}} + C \] ### Final Result Thus, the final result for the integral is: \[ I = \frac{b}{\sqrt{a^2 - b^2 x^2}} + C \]

To solve the integral \( I = \int \frac{dx}{(a^2 - b^2 x^2)^{3/2}} \), we will follow these steps: ### Step 1: Rewrite the Integral We start with the integral: \[ I = \int \frac{dx}{(a^2 - b^2 x^2)^{3/2}} \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If I=int(dx)/(x^(4)sqrt(a^(2)+x^(2))) , then I equals

I=int(dx)/((2a x+x^2)^(3/2))

I=int(dx)/((a+dx^2)sqrt(b-a x^2))

int(1)/((a^(2)+x^(2))^(3//2))dx is equal to

(3) I=int(x)/(2x^(2)+2x+3)dx

(i) int(dx)/(x^(2)+2x+6)

If I=int_(-2)^(2) dx , then I equals

If I= int (sin 2x)/((3+4cosx)^(3))dx, then I equals

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

The value of the integral I=int(2x^(9)+x^(10))/((x^(2)+x^(3))^(3))dx is equal to (where, C is the constant of integration)

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. The value of the integral int(x^2+x)(x^(-8)+2x^(-9))^(1/(10))dx is 5/(...

    Text Solution

    |

  2. int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3...

    Text Solution

    |

  3. If I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2)), then I equals

    Text Solution

    |

  4. int((x^4-1)dx)/(x^2sqrt(x^4+x^2+1))

    Text Solution

    |

  5. int(sqrt(x^2+1))/(x^4)dx=

    Text Solution

    |

  6. int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

    Text Solution

    |

  7. The integral int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx is equal to-

    Text Solution

    |

  8. If In=int( lnx)^n dx then In+nI(n-1)

    Text Solution

    |

  9. int e^x {f(x)-f'(x)}dx= phi(x), then int e^x f(x) dx is

    Text Solution

    |

  10. For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

    Text Solution

    |

  11. If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x...

    Text Solution

    |

  12. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  13. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  14. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  15. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  16. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  17. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  18. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  19. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  20. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |