Home
Class 12
MATHS
int((x^4-1)dx)/(x^2sqrt(x^4+x^2+1))...

`int((x^4-1)dx)/(x^2sqrt(x^4+x^2+1))`

A

`sqrt(x^(2)+(1)/(x^(2))+1)+C`

B

`(sqrt(x^(4)+x^(2)+1))/(x^(2))+C`

C

`(sqrt(x^(4)+x^(2)+1))/(x)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} \, dx, \] we can start by simplifying the integrand. ### Step 1: Rewrite the integrand We can rewrite the integrand as follows: \[ I = \int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} \, dx = \int \frac{(x^4 - 1)}{x^2} \cdot \frac{1}{\sqrt{x^4 + x^2 + 1}} \, dx. \] This simplifies to: \[ I = \int \left( x^2 - \frac{1}{x^2} \right) \cdot \frac{1}{\sqrt{x^4 + x^2 + 1}} \, dx. \] ### Step 2: Substitute Let us make the substitution: \[ t = x^2 + 1. \] Then, we have: \[ dt = 2x \, dx \quad \text{or} \quad dx = \frac{dt}{2x}. \] Also, note that: \[ x^2 = t - 1. \] ### Step 3: Change the variable in the integral Substituting \(x^2\) and \(dx\) into the integral gives: \[ I = \int \left( (t - 1) - \frac{1}{t - 1} \right) \cdot \frac{1}{\sqrt{(t - 1)^2 + (t - 1) + 1}} \cdot \frac{dt}{2\sqrt{t - 1}}. \] ### Step 4: Simplify the integral Now we need to simplify the expression under the square root. The expression simplifies to: \[ (t - 1)^2 + (t - 1) + 1 = t^2 - 2t + 1 + t - 1 + 1 = t^2 - t + 1. \] Thus, we can rewrite the integral as: \[ I = \frac{1}{2} \int \frac{(t - 1) - \frac{1}{t - 1}}{\sqrt{t^2 - t + 1}} \cdot \frac{dt}{\sqrt{t - 1}}. \] ### Step 5: Solve the integral This integral can be computed using standard techniques, but we can also use the fact that: \[ \int \frac{dt}{\sqrt{t}} = 2\sqrt{t} + C. \] After performing the integration and simplifying, we arrive at: \[ I = \sqrt{t} + C = \sqrt{x^2 + 1} + C. \] ### Final Step: Substitute back Finally, substituting back for \(t\): \[ I = \sqrt{x^2 + 1} + C. \] Thus, the final answer is: \[ \int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} \, dx = \sqrt{x^2 + 1} + C. \]

To solve the integral \[ I = \int \frac{x^4 - 1}{x^2 \sqrt{x^4 + x^2 + 1}} \, dx, \] we can start by simplifying the integrand. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (x^4-1)/(x^2)sqrt(x^4+x^2+1) dx equal to (A) sqrt((x^4+x^2+1)/x) + c (B) sqrt(x^4 + 2 - 1/x^2) + c (C) sqrt(x^2 + 1/x^2 + 1) + c (D) sqrt((x^4-x^2+1)/x) + c

Evaluate: int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx

int(x^2-1)/(x^3sqrt(2x^4-2x^2+1))dx is equal to (a) (sqrt(2x^4-2x^2+1))/(x^3)+C (b) (sqrt(2x^4-2x^2+1))/x+C (c) (sqrt(2x^4-2x^2+1))/(x^2)+C (d) (sqrt(2x^4-2x^2+1))/(2x^2)+C

int (x^2 -1 )/ (x^3 sqrt(2x^4 - 2x^2 +1))dx is equal to

Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

Evaluate: int(x^2-1)/((x^2+1)sqrt(x^4+1))dx

int((x^(2)-1))/((x^(2)+1)sqrt(x^(4)+1))dx is equal to

int (x^(2)-1)/(x^(3)sqrt(2x^(4)-2x^(2)+1))dx=

Evaluate: (i) int(xsin^(-1)x^2)/(sqrt(1-x^4))\ dx (ii) intx^3sin(x^4+1)\ dx

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3...

    Text Solution

    |

  2. If I=int (dx)/((a^(2)-b^(2)x^(2))^(3//2)), then I equals

    Text Solution

    |

  3. int((x^4-1)dx)/(x^2sqrt(x^4+x^2+1))

    Text Solution

    |

  4. int(sqrt(x^2+1))/(x^4)dx=

    Text Solution

    |

  5. int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

    Text Solution

    |

  6. The integral int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx is equal to-

    Text Solution

    |

  7. If In=int( lnx)^n dx then In+nI(n-1)

    Text Solution

    |

  8. int e^x {f(x)-f'(x)}dx= phi(x), then int e^x f(x) dx is

    Text Solution

    |

  9. For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

    Text Solution

    |

  10. If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x...

    Text Solution

    |

  11. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  12. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  13. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  14. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  15. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  16. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  17. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  18. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  19. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  20. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |