Home
Class 12
MATHS
int(sqrt(x^2+1))/(x^4)dx=...

`int(sqrt(x^2+1))/(x^4)dx=`

A

`-(1)/(3)((x^(2)+1)^(3//2))/(x^(3))+C`

B

`x^(3)(x^(2)+1)^(-1//2)+C`

C

`(sqrt(x^(2)+1))/(x^(2))+C`

D

`-(1)/(3)((x^(2)+1)^(3//2))/(x^(2))+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\sqrt{x^2 + 1}}{x^4} \, dx \), we can use a trigonometric substitution. Let's go through the solution step by step. ### Step 1: Trigonometric Substitution Let \( x = \tan(\theta) \). Then, we have: \[ \sqrt{x^2 + 1} = \sqrt{\tan^2(\theta) + 1} = \sqrt{\sec^2(\theta)} = \sec(\theta) \] Also, the differential \( dx \) is given by: \[ dx = \sec^2(\theta) \, d\theta \] ### Step 2: Substitute in the Integral Now, substituting \( x \) and \( dx \) into the integral, we get: \[ \int \frac{\sqrt{x^2 + 1}}{x^4} \, dx = \int \frac{\sec(\theta)}{\tan^4(\theta)} \sec^2(\theta) \, d\theta \] This simplifies to: \[ \int \frac{\sec^3(\theta)}{\tan^4(\theta)} \, d\theta \] ### Step 3: Rewrite in Terms of Sine and Cosine Using the identities \( \sec(\theta) = \frac{1}{\cos(\theta)} \) and \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \), we can rewrite the integral: \[ \int \frac{1}{\cos^3(\theta)} \cdot \frac{\cos^4(\theta)}{\sin^4(\theta)} \, d\theta = \int \frac{\cos(\theta)}{\sin^4(\theta)} \, d\theta \] ### Step 4: Simplifying the Integral This can be expressed as: \[ \int \cos(\theta) \cdot \csc^4(\theta) \, d\theta \] Now, we can use the substitution \( u = \sin(\theta) \), which gives \( du = \cos(\theta) \, d\theta \). The integral becomes: \[ \int \frac{1}{u^4} \, du \] ### Step 5: Integrate Now, we can integrate: \[ \int u^{-4} \, du = -\frac{1}{3} u^{-3} + C = -\frac{1}{3 \sin^3(\theta)} + C \] ### Step 6: Back Substitute Now, substituting back for \( \sin(\theta) \): Since \( \sin(\theta) = \frac{x}{\sqrt{x^2 + 1}} \), we have: \[ -\frac{1}{3} \left(\frac{x}{\sqrt{x^2 + 1}}\right)^{-3} + C = -\frac{1}{3} \cdot \frac{(\sqrt{x^2 + 1})^3}{x^3} + C \] ### Final Result Thus, the final result of the integral is: \[ -\frac{1}{3} \cdot \frac{(x^2 + 1)^{3/2}}{x^3} + C \]

To solve the integral \( \int \frac{\sqrt{x^2 + 1}}{x^4} \, dx \), we can use a trigonometric substitution. Let's go through the solution step by step. ### Step 1: Trigonometric Substitution Let \( x = \tan(\theta) \). Then, we have: \[ \sqrt{x^2 + 1} = \sqrt{\tan^2(\theta) + 1} = \sqrt{\sec^2(\theta)} = \sec(\theta) \] Also, the differential \( dx \) is given by: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(1+x^2))/(x^4) dx

Evaluate: int(sqrt(1+x^2))/(x^4)dx

If int(sqrt(1-x^2))/x^4dx=A(x) (sqrt(1-x^2))^m+C ,for a suitable chosen integer m and a function A(x), where C is a constant of integration, then (A(x))^m equals

int(x^2+1)/sqrt(x^2+4)dx

int(x)/(sqrt(1+x^(2)))dx

int(x)/(sqrt(1+x^(2)))dx

Evaluate the following : (i) int(x+(1)/(x))^(3//2)((x^(2)-1)/(x^(2)))dx " (ii) " int(sqrt(2+logx))/(x)dx (iii) int((sin^(-1)x)^(3))/(sqrt(1-x^(2)))dx " (iv) " int(cotx)/(sqrt(sinx))dx

If int sqrt(1-x^2)/x^4dx=A(x).(sqrt(1-x^2))^m where A(x) is a function of x then (A(x))^m = (A) -1/(27x^9) (B) 1/(27x)^9 (C) 1/(3x^9) (D) -1/(3x^9)

int sqrt (x^2+4) dx

int(1)/(sqrt(4x^(2)-x+4))dx