Home
Class 12
MATHS
If In=int( lnx)^n dx then In+nI(n-1)...

If `I_n=int( lnx)^n dx` then `I_n+nI_(n-1)`

A

`(("In "x)^(n))/(x)+C`

B

`x("In "x)^(n-1)+C`

C

`x("In "x)^(n)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the integral \( I_n = \int (\ln x)^n \, dx \) and we need to find the expression for \( I_n + n I_{n-1} \). ### Step-by-Step Solution: 1. **Define the Integral**: \[ I_n = \int (\ln x)^n \, dx \] 2. **Use Integration by Parts**: We will apply integration by parts. Let: - \( u = (\ln x)^n \) (first function) - \( dv = dx \) (second function) Then, we differentiate and integrate: - \( du = n (\ln x)^{n-1} \cdot \frac{1}{x} \, dx \) - \( v = x \) By the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] we have: \[ I_n = x (\ln x)^n - \int x \cdot n (\ln x)^{n-1} \cdot \frac{1}{x} \, dx \] Simplifying the integral: \[ I_n = x (\ln x)^n - n \int (\ln x)^{n-1} \, dx \] This gives: \[ I_n = x (\ln x)^n - n I_{n-1} \] 3. **Rearranging the Equation**: Rearranging the above equation gives: \[ I_n + n I_{n-1} = x (\ln x)^n \] 4. **Final Expression**: Therefore, we can express the result as: \[ I_n + n I_{n-1} = x (\ln x)^n + C \] where \( C \) is the constant of integration. ### Conclusion: Thus, the final result is: \[ I_n + n I_{n-1} = x (\ln x)^n + C \]

To solve the problem, we start with the integral \( I_n = \int (\ln x)^n \, dx \) and we need to find the expression for \( I_n + n I_{n-1} \). ### Step-by-Step Solution: 1. **Define the Integral**: \[ I_n = \int (\ln x)^n \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

If I_(n)-int(lnx)^(n)dx, then I_(10)+10I_(9) is equal to (where C is the constant of integration)

If I_n=int(sinx)^ndx, n in N , then 5I_4-6I_6 is equal to

If I_m=int_1^e (lnx)^m dx ,m in N , then I_(10)+10 I_9 is equal to (A) e^(10) (B) (e^(10))/(10) (C) e (D) e-1

If = int_(1)^(e) (logx)^(n) dx, "then"I_(n)+nI_(n-1) is equal to

If I_(n)=int(sinx+cosx)^(n) dx, snd I_(n)=1/n(sinx+cosx)^(n-1)(sinx-cosx)+(2k)/(n) I_(n-2) then k=

If I_(n)=int cos^(n)x dx . Prove that I_(n)=(1)/(n)(cos^(n-1)x sinx)+((n-1)/(n))I_(n-2) .

If I_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11)) is equal to ___

IfI_n=int_0^1(1-x^5)^n dx ,t h e n(55)/7(I_(10))/(I_(11)) is equal to

If I_n=int_(pi/4)^(pi/2) (tanx)^-n dx(ngt1) , then I_n+I_(n+2)= (A) 1/(n-1) (B) 1/(n+1) (C) -1/(n+1) (D) 1/n-1

If I_(n)=int_(0)^(pi/2) sin^(n)x dx , then show that I_(n)=((n-1)n)I_(n-2) . Hence prove that I_(n)={(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(1/2)(pi)/2,"if",n"is even"),(((n-1)/n)((n-3)/(n-2))((n-5)/(n-4))………(2/3)1,"if",n"is odd"):}

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. int (1+2x^(6))/((1-x^(6))^(3//2))dx is equal to

    Text Solution

    |

  2. The integral int[2x^[12]+5x^9]/[x^5+x^3+1]^3.dx is equal to-

    Text Solution

    |

  3. If In=int( lnx)^n dx then In+nI(n-1)

    Text Solution

    |

  4. int e^x {f(x)-f'(x)}dx= phi(x), then int e^x f(x) dx is

    Text Solution

    |

  5. For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

    Text Solution

    |

  6. If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x...

    Text Solution

    |

  7. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  8. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  9. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  10. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  11. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  12. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  13. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  14. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  15. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  16. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  17. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  18. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  19. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  20. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |