Home
Class 12
MATHS
For x >1,int sin^(- 1)((2x)/(1+x^2))dx i...

For `x >1,int sin^(- 1)((2x)/(1+x^2))dx` is equal to

A

`x tan^(-1)x-In|sec(tan^(-1)x)|+c`

B

`x tan^(-1)x+In|sec(tan^(-1)x)|+c`

C

`x tan^(-1)x-In|cos(tan^(-1)x)|+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \sin^{-1}\left(\frac{2x}{1+x^2}\right) dx \), we can follow these steps: ### Step 1: Substitution Let \( x = \tan(\theta) \). Then, we have: \[ dx = \sec^2(\theta) d\theta \] Also, we can express \( \frac{2x}{1+x^2} \) in terms of \( \theta \): \[ \frac{2x}{1+x^2} = \frac{2\tan(\theta)}{1+\tan^2(\theta)} = \frac{2\tan(\theta)}{\sec^2(\theta)} = 2\sin(\theta) \] Thus, we can rewrite the integral as: \[ I = \int \sin^{-1}(2\sin(\theta)) \sec^2(\theta) d\theta \] ### Step 2: Simplifying the Integral Using the identity \( \sin^{-1}(2\sin(\theta)) = \theta \) when \( \theta \) is in the appropriate range (which is valid since \( x > 1 \) implies \( \theta \) is in the first quadrant), we have: \[ I = \int \theta \sec^2(\theta) d\theta \] ### Step 3: Integration by Parts Let \( u = \theta \) and \( dv = \sec^2(\theta) d\theta \). Then, we have: \[ du = d\theta \quad \text{and} \quad v = \tan(\theta) \] Using integration by parts: \[ I = u v - \int v du = \theta \tan(\theta) - \int \tan(\theta) d\theta \] ### Step 4: Integrating \( \tan(\theta) \) The integral of \( \tan(\theta) \) is: \[ \int \tan(\theta) d\theta = -\ln|\cos(\theta)| + C \] Thus, we can substitute this back into our expression for \( I \): \[ I = \theta \tan(\theta) + \ln|\cos(\theta)| + C \] ### Step 5: Back Substitution Recall that \( \theta = \tan^{-1}(x) \) and \( \tan(\theta) = x \). Also, we have: \[ \cos(\theta) = \frac{1}{\sqrt{1+x^2}} \] Therefore: \[ I = \tan^{-1}(x) \cdot x + \ln\left|\frac{1}{\sqrt{1+x^2}}\right| + C \] This simplifies to: \[ I = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \] ### Final Answer Thus, the integral \( \int \sin^{-1}\left(\frac{2x}{1+x^2}\right) dx \) is equal to: \[ I = x \tan^{-1}(x) - \frac{1}{2} \ln(1+x^2) + C \]

To solve the integral \( I = \int \sin^{-1}\left(\frac{2x}{1+x^2}\right) dx \), we can follow these steps: ### Step 1: Substitution Let \( x = \tan(\theta) \). Then, we have: \[ dx = \sec^2(\theta) d\theta \] Also, we can express \( \frac{2x}{1+x^2} \) in terms of \( \theta \): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int((1)/(5)-(2)/(x^5)+2x)dx is equal to …

int(sin^(- 1)x)/((1-x^2)^(3/2))dx

int(1)/(1+3 sin ^(2)x)dx is equal to

int("In"((x-1)/(x+1)))/(x^(2)-1)dx is equal to

int ( x^(2) + 1)/( x^(2) - 1)dx is equal to

d/(dx) (sin^(-1) "" (2x)/(1+x^(2))) is equal to

int_(0)^(1)x^(2)(1-x)^(3)dx is equal to

int(sin^(- 1)x)/((1-x^2)^(1/2)) dx

int((x+1)^(2)dx)/(x(x^(2)+1)) is equal to

int( x + sin x )/( 1+ cos x) dx is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. If In=int( lnx)^n dx then In+nI(n-1)

    Text Solution

    |

  2. int e^x {f(x)-f'(x)}dx= phi(x), then int e^x f(x) dx is

    Text Solution

    |

  3. For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

    Text Solution

    |

  4. If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x...

    Text Solution

    |

  5. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  6. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  7. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  8. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  9. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  10. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  11. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  12. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  13. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  14. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  15. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  16. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  17. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  18. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  19. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  20. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |