Home
Class 12
MATHS
Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+...

`Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C ,` then `f(x)=1/2x^2` (b) `g(x)=logx` `A=1` (d) none of these

A

`f(x)=(1)/(2)x^(2)`

B

`g(x)=log x`

C

`A=1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x \log(1 + \frac{1}{x}) \, dx \) and express it in the form \( f(x) \log(x + 1) + g(x)x^2 + Ax + C \), we will follow the steps outlined below. ### Step 1: Rewrite the Integral We start with the integral: \[ \int x \log(1 + \frac{1}{x}) \, dx \] We can rewrite \( \log(1 + \frac{1}{x}) \) using the property of logarithms: \[ \log(1 + \frac{1}{x}) = \log\left(\frac{x + 1}{x}\right) = \log(x + 1) - \log(x) \] Thus, the integral becomes: \[ \int x \left( \log(x + 1) - \log(x) \right) \, dx \] This can be separated into two integrals: \[ \int x \log(x + 1) \, dx - \int x \log(x) \, dx \] ### Step 2: Apply Integration by Parts We will use integration by parts on both integrals. Recall the integration by parts formula: \[ \int u \, dv = uv - \int v \, du \] #### For \( \int x \log(x + 1) \, dx \): Let \( u = \log(x + 1) \) and \( dv = x \, dx \). Then, \( du = \frac{1}{x + 1} \, dx \) and \( v = \frac{x^2}{2} \). Applying integration by parts: \[ \int x \log(x + 1) \, dx = \frac{x^2}{2} \log(x + 1) - \int \frac{x^2}{2} \cdot \frac{1}{x + 1} \, dx \] #### For \( \int x \log(x) \, dx \): Let \( u = \log(x) \) and \( dv = x \, dx \). Then, \( du = \frac{1}{x} \, dx \) and \( v = \frac{x^2}{2} \). Applying integration by parts: \[ \int x \log(x) \, dx = \frac{x^2}{2} \log(x) - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx = \frac{x^2}{2} \log(x) - \frac{1}{2} \int x \, dx \] \[ = \frac{x^2}{2} \log(x) - \frac{x^2}{4} \] ### Step 3: Combine Results Now we combine the results from both integrals: \[ \int x \log(1 + \frac{1}{x}) \, dx = \left( \frac{x^2}{2} \log(x + 1) - \int \frac{x^2}{2} \cdot \frac{1}{x + 1} \, dx \right) - \left( \frac{x^2}{2} \log(x) - \frac{x^2}{4} \right) \] ### Step 4: Simplify the Expression After simplifying, we can express the integral in the required form: \[ \int x \log(1 + \frac{1}{x}) \, dx = f(x) \log(x + 1) + g(x)x^2 + Ax + C \] From the integration, we can identify: - \( f(x) = \frac{1}{2} x^2 \) - \( g(x) = \log(x) \) - \( A = 1 \) ### Final Answer Thus, we conclude that: - \( f(x) = \frac{1}{2} x^2 \) - \( g(x) = \log(x) \) - \( A = 1 \)

To solve the integral \( \int x \log(1 + \frac{1}{x}) \, dx \) and express it in the form \( f(x) \log(x + 1) + g(x)x^2 + Ax + C \), we will follow the steps outlined below. ### Step 1: Rewrite the Integral We start with the integral: \[ \int x \log(1 + \frac{1}{x}) \, dx \] We can rewrite \( \log(1 + \frac{1}{x}) \) using the property of logarithms: ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then (a) f(x)=1/2x^2 (b) g(x)=logx (c) A=1 (d) none of these

If intx log (1+(1)/(x))dx =f(x).log_(e)(x+1)+g(x)log_(e)x+Lx+C , then

int(x+1)/(x(1+x e^x)^2)dx=log|1-f(x)|+f(x)+c , then f(x)=

If int[(logx-1)/(1+(logx)^2)]^2dx=f(x)/(1+(g(x))^2)+c , then (A) f(x)=x (B) f(x)=x^2 (C) g(x)=logx (D) g(x)=(logx)^2

If f(x)=(sin^(-1)x)/(sqrt(1-x^2)),t h e n(1-x^2)f^(x)-xy(x)= 1 (b) -1 (c) 0 (d) none of these

If f(x)=(sin^(-1)x)/(sqrt(1-x^2)),t h e n(1-x^2)f^(x)-xf(x)= (a)1 (b) -1 (c) 0 (d) none of these

The differential coefficient of f(logx) with respect to x , where f(x)=logx is (a) x/(logx) (b) (logx)/x (c) (xlogx)^(-1) (d) none of these

If f(x)=1/x ,g(x)=1/(x^2), and h(x)=x^2 , then (A) f(g(x))=x^2,x!=0,h(g(x))=1/(x^2) (B) h(g(x))=1/(x^2),x!=0,fog(x)=x^2 (C) fog(x)=x^2,x!=0,h(g(x))=(g(x))^2,x!=0 (D) none of these

The distinct linear functions which map [-1, 1] onto [0, 2] are f(x)=x+1,\ \ g(x)=-x+1 (b) f(x)=x-1,\ \ g(x)=x+1 (c) f(x)=-x-1,\ \ g(x)=x-1 (d) none of these

If f(x) and g(x) are two polynomials such that the polynomial h(x)=xf(x^3)+x^2g(x^6) is divisible by x^2+x+1, then f(1)=g(1) (b) f(1)=1g(1) h(1)=0 (d) all of these

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. For x >1,int sin^(- 1)((2x)/(1+x^2))dx is equal to

    Text Solution

    |

  2. If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x...

    Text Solution

    |

  3. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  4. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  5. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  6. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  7. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  8. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  9. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  10. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  11. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  12. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  13. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  14. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  15. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  16. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  17. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  18. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  19. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  20. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |