Home
Class 12
MATHS
If I=inte^(-x)log(e^x+1)dx ,t h e nIe q ...

If `I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l` `a+(e^(-x)+1)log(e^x+1)+C` `a+(e^x+1)log(e^x+1)+C` `a-(e^(-x)+1)log(e^x+1)+C` none of these

A

`x+(e^(-x)+1)log(e^(x)+1)+C`

B

`x+(e^(x)+1)log(e^(x)+1)+C`

C

`x-(e^(-x)+1)log(e^(x)+1)+C`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^{-x} \log(e^x + 1) \, dx \), we will use integration by parts. Let's denote: - \( u = \log(e^x + 1) \) (which we will differentiate) - \( dv = e^{-x} \, dx \) (which we will integrate) ### Step 1: Differentiate \( u \) and Integrate \( dv \) 1. Differentiate \( u \): \[ du = \frac{1}{e^x + 1} \cdot e^x \, dx = \frac{e^x}{e^x + 1} \, dx \] 2. Integrate \( dv \): \[ v = \int e^{-x} \, dx = -e^{-x} \] ### Step 2: Apply Integration by Parts Using the integration by parts formula: \[ I = uv - \int v \, du \] we substitute \( u \), \( du \), \( v \), and \( dv \): \[ I = \log(e^x + 1)(-e^{-x}) - \int (-e^{-x}) \left(\frac{e^x}{e^x + 1}\right) \, dx \] This simplifies to: \[ I = -\log(e^x + 1)e^{-x} + \int \frac{1}{e^x + 1} \, dx \] ### Step 3: Solve the Remaining Integral Now we need to solve: \[ \int \frac{1}{e^x + 1} \, dx \] We can use the substitution \( t = e^x + 1 \), which gives \( dt = e^x \, dx \) or \( dx = \frac{dt}{e^x} = \frac{dt}{t - 1} \). Thus, we have: \[ \int \frac{1}{t} \cdot \frac{dt}{t - 1} \] This integral can be solved using partial fractions: \[ \frac{1}{t(t - 1)} = \frac{1}{t} + \frac{1}{1 - t} \] Integrating gives: \[ \int \frac{1}{t} \, dt - \int \frac{1}{1 - t} \, dt = \log|t| - \log|1 - t| + C \] Substituting back \( t = e^x + 1 \): \[ \int \frac{1}{e^x + 1} \, dx = \log(e^x + 1) - \log(-e^x) + C \] ### Step 4: Combine the Results Now we combine everything: \[ I = -\log(e^x + 1)e^{-x} + \log(e^x + 1) - \log(-e^x) + C \] ### Final Answer Thus, the final result can be expressed as: \[ I = -\log(e^x + 1)e^{-x} + \log(e^x + 1) + C \]

To solve the integral \( I = \int e^{-x} \log(e^x + 1) \, dx \), we will use integration by parts. Let's denote: - \( u = \log(e^x + 1) \) (which we will differentiate) - \( dv = e^{-x} \, dx \) (which we will integrate) ### Step 1: Differentiate \( u \) and Integrate \( dv \) 1. Differentiate \( u \): ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int (1+log_e x)/x dx

int e^(x log a ) e^(x) dx is equal to A) (a^(x))/( log ae) + C B) ( e^(x))/( 1+log a ) + C C) ( ae )^(x) +C D) ((ae)^(x))/( log ae) +C

The minimum value of x/((log)_e x) is e (b) 1//e (c) 1 (d) none of these

The differential coefficient of f((log)_e x) with respect to x , where f(x)=(log)_e x , is (a) x/((log)_e x) (b) 1/x(log)_e x (c) 1/(x(log)_e x) (d) none of these

int(log_e(x+1)-log_ex)/(x(x+1))dx is equal to (A) -1/2[log(x+1)^2-1/2logx]^2+log_e(x+1)log_ex+C (B) -[(log_e(x+1)-log_ex]^2 (C) c-1/2(log(1+1/x))^2 (D) none of these

int( x-1)e^(-x) dx is equal to : a) ( x- 2)e^(x) + C b) x e^(-x) + C c) - x e^(x) + C d) ( x+1)e^(-x) +C

Integration of 1/(1+((log)_e x)^2) with respect to (log)_e x is (tan^(-1)((log)_e x)/x)+C (b) tan^(-1)((log)_e x)+C (c) (tan^(-1)x)/x+C (d) none of these

If f^(prime)(x)=f(x)+int_0^1f(x)dx ,gi v e nf(0)=1, then the value of f((log)_e 2) is (a) 1/(3+e) (b) (5-e)/(3-e) (c) (2+e)/(e-2) (d) none of these

The derivative of (log)_(10)x w.r.t. x^2 is equal to 1/(2x^2)log_e 10 (b) 2/(x^2)(log)_(10)e 1/(2x^2)(log)_(10)e (d) none of these

Column I, a) int(e^(2x)-1)/(e^(2x)+1)dx is equal to b) int1/((e^x+e^(-x))^2)dx is equal to c) int(e^(-x))/(1+e^x)dx is equal to d) int1/(sqrt(1-e^(2x)))dx is equal to COLUMN II p) x-log[1+sqrt(1-e^(2x)]+c q) log(e^x+1)-x-e^(-x)+c r) log(e^(2x)+1)-x+c s) -1/(2(e^(2x)+1))+c

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. If int x((ln(x+sqrt(1+x^2)))/sqrt(1+x^2)) dx=asqrt(1+x^2)ln(x+sqrt(1+x...

    Text Solution

    |

  2. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  3. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  4. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  5. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  6. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  7. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  8. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  9. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  10. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  11. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  12. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  13. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  14. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  15. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  16. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  17. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  18. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  19. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |

  20. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |