Home
Class 12
MATHS
"If " int x e^(x) cosx dx=ae^(x)(b(1-x)s...

`"If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d,` then

A

`a=1,b=1,c=-1`

B

`a=(1)/(2),b=-1,c=1`

C

`a=1,b=-1,c=1`

D

`a=(1)/(2),b=1,c=-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int x e^x \cos x \, dx \), we will use integration by parts and the technique of reduction formulas. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We will let: \[ u = x \quad \text{and} \quad dv = e^x \cos x \, dx \] Then, we differentiate \( u \) and integrate \( dv \): \[ du = dx \quad \text{and} \quad v = \int e^x \cos x \, dx \] 2. **Calculate \( v \)**: To find \( v \), we need to compute \( \int e^x \cos x \, dx \). We will apply integration by parts again: Let: \[ w = e^x \quad \text{and} \quad dz = \cos x \, dx \] Then: \[ dw = e^x \, dx \quad \text{and} \quad z = \sin x \] Using integration by parts: \[ \int e^x \cos x \, dx = e^x \sin x - \int e^x \sin x \, dx \] 3. **Calculate \( \int e^x \sin x \, dx \)**: Again, we apply integration by parts: Let: \[ w = e^x \quad \text{and} \quad dz = \sin x \, dx \] Then: \[ dw = e^x \, dx \quad \text{and} \quad z = -\cos x \] Thus: \[ \int e^x \sin x \, dx = -e^x \cos x - \int -e^x \cos x \, dx \] Simplifying gives: \[ \int e^x \sin x \, dx = -e^x \cos x + \int e^x \cos x \, dx \] 4. **Combine the results**: Let \( I = \int e^x \cos x \, dx \) and \( J = \int e^x \sin x \, dx \). We have: \[ I = e^x \sin x - J \] And: \[ J = -e^x \cos x + I \] Substituting \( J \) into the equation for \( I \): \[ I = e^x \sin x - (-e^x \cos x + I) \] Rearranging gives: \[ I + I = e^x \sin x + e^x \cos x \] \[ 2I = e^x (\sin x + \cos x) \] Thus: \[ I = \frac{1}{2} e^x (\sin x + \cos x) \] 5. **Substituting back into the original integral**: Now substituting \( I \) back into our integration by parts formula: \[ \int x e^x \cos x \, dx = x \cdot \frac{1}{2} e^x (\sin x + \cos x) - \int \frac{1}{2} e^x (\sin x + \cos x) \, dx \] The second integral can be computed as: \[ \int e^x (\sin x + \cos x) \, dx = \frac{1}{2} e^x (\sin x + \cos x) \] Thus: \[ \int x e^x \cos x \, dx = \frac{1}{2} x e^x (\sin x + \cos x) - \frac{1}{2} \cdot \frac{1}{2} e^x (\sin x + \cos x) + C \] 6. **Final result**: Thus, we have: \[ \int x e^x \cos x \, dx = \frac{1}{2} e^x \left( x (\sin x + \cos x) - \frac{1}{2} (\sin x + \cos x) \right) + C \]

To solve the integral \( \int x e^x \cos x \, dx \), we will use integration by parts and the technique of reduction formulas. ### Step-by-Step Solution: 1. **Identify the parts for integration by parts**: We will let: \[ u = x \quad \text{and} \quad dv = e^x \cos x \, dx ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int e^x(sinx+cosx)dx=

inte^(x)(cosx-sinx)dx

inte^(x)(sinx+cosx)dx=?

int(x-sinx)/(1-cosx)dx

int(x-sinx)/(1-cosx)dx

If polynomials P and Q satisfy int[(3x-1)cosx+(1-2x)sinx ]dx=P cosx+Qsinx (ignore the constant of integration) then :

int(sin2x)/((sinx+cosx)^2)dx

int e^x ((1+sinx)/(1+cosx))dx=

Evaluate int e^(x)((1-sinx)/(1-cosx))dx.

Find dy/dx for the function: f(x)=e^x(sinx-cosx) .

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  2. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  3. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  4. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  5. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  6. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  7. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  8. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  9. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  10. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  11. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  12. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  13. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  14. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  15. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  16. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  17. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  18. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |

  19. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |

  20. IfI(m , n)=intcos^m xsinn xdx ,t h e n7I(4,3)-4I(3,2)i se q u a lto c...

    Text Solution

    |