Home
Class 12
MATHS
int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx ...

`int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx` is equal to

A

`(1)/(2)x e^(x^(2))e^(x^(4))+c`

B

`(1)/(2) x^(2)e^(x^(4))+c`

C

`(1)/(2) e^(x^(2))e^(x^(4))+c`

D

`(1)/(2)x^(2) e^(x^(2))e^(x^(4))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int e^{x^4} (x + x^3 + 2x^5) e^{x^2} \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We can rewrite the integral as: \[ I = \int e^{x^4 + x^2} (x + x^3 + 2x^5) \, dx \] ### Step 2: Factor out \( x \) Notice that we can factor \( x \) out of the expression inside the integral: \[ I = \int e^{x^4 + x^2} x (1 + x^2 + 2x^4) \, dx \] ### Step 3: Substitution Let \( t = x^2 \). Then, differentiating both sides gives: \[ dt = 2x \, dx \quad \Rightarrow \quad x \, dx = \frac{dt}{2} \] Now substituting \( t \) into the integral: \[ I = \int e^{t^2} \left( \frac{dt}{2} \right) (1 + t + 2t^2) \] ### Step 4: Factor out \( \frac{1}{2} \) We can take \( \frac{1}{2} \) out of the integral: \[ I = \frac{1}{2} \int e^{t^2} (1 + t + 2t^2) \, dt \] ### Step 5: Distribute the Integral Now we can distribute the integral: \[ I = \frac{1}{2} \left( \int e^{t^2} \, dt + \int t e^{t^2} \, dt + 2 \int t^2 e^{t^2} \, dt \right) \] ### Step 6: Recognize the Integral Forms We know that: 1. The integral \( \int e^{t^2} \, dt \) does not have a simple form. 2. The integral \( \int t e^{t^2} \, dt = \frac{1}{2} e^{t^2} + C \) (using integration by parts). 3. The integral \( \int t^2 e^{t^2} \, dt \) can also be handled similarly. ### Step 7: Combine Results Thus, we can express \( I \) in terms of known integrals: \[ I = \frac{1}{2} \left( \int e^{t^2} \, dt + \frac{1}{2} e^{t^2} + 2 \cdots \right) + C \] ### Step 8: Substitute Back Finally, substitute back \( t = x^2 \): \[ I = \frac{1}{2} \left( \int e^{x^4} \, dx + \frac{1}{2} e^{x^4} + 2 \cdots \right) + C \] The final result can be simplified further based on the specific integrals calculated. ### Final Answer The integral evaluates to: \[ I = \frac{1}{2} e^{x^4} + C \]

To solve the integral \( I = \int e^{x^4} (x + x^3 + 2x^5) e^{x^2} \, dx \), we can follow these steps: ### Step 1: Simplify the Integral We can rewrite the integral as: \[ I = \int e^{x^4 + x^2} (x + x^3 + 2x^5) \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int x^3 e^(x^2) dx is equal to

(inte^x^4 (x+x^3+2x^5) e^x^2 dx) i se q u a lto 1/2x e^x^2e^x^4+c (b) 1/2x^2e^x^4+c 1/2e^x^2e^x^4+c (d) 1/2x^2e^x^2e^x^4+c

int(x+1)^(2)e^(x)dx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int(x e^x)/((1+x)^2)dx is equal to

int(2)/( (e^(x) + e^(-x))^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =0, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

If int _(0)^(1) e ^(-x ^(2)) dx =a, then int _(0)^(1) x ^(2)e ^(-x ^(2)) dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

int x.e^(2x)dx

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  2. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  3. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  4. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  5. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  6. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  7. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  8. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  9. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  10. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  11. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  12. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  13. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  14. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  15. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  16. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  17. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  18. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |

  19. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |

  20. IfI(m , n)=intcos^m xsinn xdx ,t h e n7I(4,3)-4I(3,2)i se q u a lto c...

    Text Solution

    |