Home
Class 12
MATHS
The value of integral inte^x(1/(sqrt(1+x...

The value of integral `inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi se q u a lto` `e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^3)))+c` `e^x(1/(sqrt(1+x^2))-1/(sqrt((1+x^2)^3)))+c` `e^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))+c` none of these

A

` e^(x)((1)/(sqrt(1+x^(2)))+(x)/(sqrt((1+x^(2))^(3))))+c`

B

` e^(x)((1)/(sqrt(1+x^(2)))-(x)/(sqrt((1+x^(2))^(3))))+c`

C

` e^(x)((1)/(sqrt(1+x^(2)))+(x)/(sqrt((1+x^(2))^(5))))+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int e^x \left( \frac{1}{\sqrt{1+x^2}} + \frac{1}{\sqrt{(1+x^2)^5}} \right) dx, \] we can use the technique of integration by recognizing a pattern that resembles the derivative of a function multiplied by \( e^x \). ### Step 1: Identify the function and its derivative Let’s denote: \[ f(x) = \frac{1}{\sqrt{1+x^2}}. \] Now, we need to find the derivative \( f'(x) \): \[ f'(x) = \frac{d}{dx} \left( (1+x^2)^{-1/2} \right) = -\frac{1}{2} (1+x^2)^{-3/2} \cdot (2x) = -\frac{x}{(1+x^2)^{3/2}}. \] ### Step 2: Combine terms Now, we can express our integral in terms of \( f(x) \) and its derivative. The second term in the integral can be rewritten using the derivative we found: \[ \frac{1}{\sqrt{(1+x^2)^5}} = (1+x^2)^{-5/2} = (1+x^2)^{-3/2} \cdot (1+x^2)^{-1} = f'(x) \cdot (1+x^2)^{-1}. \] ### Step 3: Rewrite the integral Thus, we can rewrite the integral as: \[ \int e^x \left( f(x) + f'(x) \cdot (1+x^2)^{-1} \right) dx. \] ### Step 4: Apply integration by parts Now, we can apply the integration formula for \( e^x f(x) \): \[ \int e^x f(x) dx = e^x f(x) + C. \] ### Step 5: Solve the integral Now we can integrate: \[ \int e^x \left( \frac{1}{\sqrt{1+x^2}} + \frac{1}{\sqrt{(1+x^2)^5}} \right) dx = e^x \left( \frac{1}{\sqrt{1+x^2}} + \frac{1}{\sqrt{(1+x^2)^3}} \right) + C. \] ### Final Answer Thus, the final answer is: \[ e^x \left( \frac{1}{\sqrt{1+x^2}} + \frac{1}{\sqrt{(1+x^2)^3}} \right) + C. \]

To solve the integral \[ \int e^x \left( \frac{1}{\sqrt{1+x^2}} + \frac{1}{\sqrt{(1+x^2)^5}} \right) dx, \] we can use the technique of integration by recognizing a pattern that resembles the derivative of a function multiplied by \( e^x \). ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

The value of integral inte^x(1/(sqrt(1+x^2))+(1-2x^2)/(sqrt((1+x^2)^5)))dx is equal to (a)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^3)))+c (b)e^x(1/(sqrt(1+x^2))-x/(sqrt((1+x^2)^3)))+c (c)e^x(1/(sqrt(1+x^2))+x/(sqrt((1+x^2)^5)))+c (d)none of these

int(e^x[1+sqrt(1-x^2)sin^-1x])/sqrt(1-x^2)dx

int(sqrt(1-x^(2))-x)/(sqrt(1-x^(2))(1+xsqrt(1-x^(2))))dx is

Evaluate: inte^xdot(sqrt(1-x^2)sin^(-1)x+1)/(sqrt(1-x^2))\ dx

int(x^3dx)/(sqrt(1+x^2))i se q u a lto 1/3sqrt(1+x^2)(2+x^2)+C 1/3sqrt(1+x^2)(x^2-1)+C 1/3(1+x^2)^(3/2)+C (d) 1/3sqrt(1+x^2)(x^2-2)+C

tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))

The value of int_(-1)^(1) {sqrt(1+x+x^(2))-sqrt(1-x+x^(2))}dx , is

int(sqrt(1-x^(2))+sqrt(1+x^(2)))/(sqrt(1-x^(4)))dx=

d/(dx)[cos^(-1)(xsqrt(x)-sqrt((1-x)(1-x^2)))]= 1/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) (-1)/(sqrt(1-x^2))-1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2))+1/(2sqrt(x-x^2)) 1/(sqrt(1-x^2)) 0 b. 1//4 c. -1//4 d. none of these

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  2. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  3. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  4. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  5. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  6. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  7. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  8. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  9. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  10. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  11. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  12. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  13. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  14. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  15. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  16. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  17. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  18. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |

  19. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |

  20. IfI(m , n)=intcos^m xsinn xdx ,t h e n7I(4,3)-4I(3,2)i se q u a lto c...

    Text Solution

    |