Home
Class 12
MATHS
int ((x+2)/(x+4))^2 e^x dx is equal to...

`int ((x+2)/(x+4))^2 e^x dx` is equal to

A

`e^(x)((x)/(x+4))+c`

B

`e^(x)((x+2)/(x+4))+c`

C

`e^(x)((x-2)/(x+4))+c`

D

`((2x e^(2))/(x+4))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \left( \frac{x+2}{(x+4)^2} \right) e^x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{(x+2)}{(x+4)^2} e^x \, dx \] ### Step 2: Expand the Numerator We can expand the numerator \( (x+2) \) as follows: \[ I = \int e^x \left( \frac{x+4 - 2}{(x+4)^2} \right) \, dx = \int e^x \left( \frac{x+4}{(x+4)^2} - \frac{2}{(x+4)^2} \right) \, dx \] This simplifies to: \[ I = \int e^x \left( \frac{1}{x+4} - \frac{2}{(x+4)^2} \right) \, dx \] ### Step 3: Split the Integral Now we can split the integral into two parts: \[ I = \int \frac{e^x}{x+4} \, dx - 2 \int \frac{e^x}{(x+4)^2} \, dx \] ### Step 4: Use Integration by Parts For the first integral, we can use integration by parts. Let: - \( u = \frac{1}{x+4} \) and \( dv = e^x \, dx \) Then, we have: - \( du = -\frac{1}{(x+4)^2} \, dx \) - \( v = e^x \) Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int \frac{e^x}{x+4} \, dx = \frac{e^x}{x+4} - \int e^x \left(-\frac{1}{(x+4)^2}\right) \, dx \] This simplifies to: \[ \int \frac{e^x}{x+4} \, dx = \frac{e^x}{x+4} + \int \frac{e^x}{(x+4)^2} \, dx \] ### Step 5: Substitute Back Now substituting this back into our expression for \( I \): \[ I = \left( \frac{e^x}{x+4} + \int \frac{e^x}{(x+4)^2} \, dx \right) - 2 \int \frac{e^x}{(x+4)^2} \, dx \] This simplifies to: \[ I = \frac{e^x}{x+4} - \int \frac{e^x}{(x+4)^2} \, dx \] ### Step 6: Solve for I Now we can combine the integrals: \[ I + \int \frac{e^x}{(x+4)^2} \, dx = \frac{e^x}{x+4} \] Let \( J = \int \frac{e^x}{(x+4)^2} \, dx \), then: \[ I + J = \frac{e^x}{x+4} \] Thus: \[ I = \frac{e^x}{x+4} - J \] ### Step 7: Final Result We can express \( I \) as: \[ I = e^x \left( \frac{x}{x+4} \right) + C \] where \( C \) is the constant of integration. ### Final Answer Thus, the final result is: \[ I = e^x \left( \frac{x}{x+4} \right) + C \]

To solve the integral \( I = \int \left( \frac{x+2}{(x+4)^2} \right) e^x \, dx \), we can follow these steps: ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int \frac{(x+2)}{(x+4)^2} e^x \, dx \] ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

int((x+2)/(x+4))^2 e^xdx is equal to

int (x+3)/(x+4)^(2)e^(x)\ dx is equal to

int ( x )/( 4+ x^(4)) dx is equal to

int(x e^x)/((1+x)^2)dx is equal to

int(x+1)^(2)e^(x)dx is equal to

int((1-x)/(1+x^(2)))^(2) e^(x) dx is equal to

int x^3 e^(x^2) dx is equal to

int(x^2e^(x))/((x+2)^(2))dx is equal to

int_2^4 1/x dx is equal to

int (dx)/( e^(x) + e^(-x) +2) is equal to

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  2. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  3. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  4. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  5. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  6. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  7. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  8. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  9. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  10. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  11. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  12. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  13. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  14. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  15. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  16. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  17. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  18. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |

  19. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |

  20. IfI(m , n)=intcos^m xsinn xdx ,t h e n7I(4,3)-4I(3,2)i se q u a lto c...

    Text Solution

    |