Home
Class 12
MATHS
int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2...

`int e^(sin^(-1)x)((log_(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx` is equal to

A

`log_(e)x*e^(sin^(-1)x)+c`

B

`(e^(sin^(-1)x))/(x)+c`

C

`-log_(e)x*e^(sin^(-1)x)+c`

D

`e^(sin^(-1)x)(log_(e)x+(1)/(x))+c`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int e^{\sin^{-1} x} \left( \frac{\log_e x}{\sqrt{1 - x^2}} + \frac{1}{x} \right) dx, \] we can break it down step by step. ### Step 1: Rewrite the Integral We start by rewriting the integral: \[ I = \int e^{\sin^{-1} x} \left( \frac{\log_e x}{\sqrt{1 - x^2}} + \frac{1}{x} \right) dx. \] ### Step 2: Distribute the Exponential Distributing \( e^{\sin^{-1} x} \): \[ I = \int \left( e^{\sin^{-1} x} \frac{\log_e x}{\sqrt{1 - x^2}} + e^{\sin^{-1} x} \frac{1}{x} \right) dx. \] ### Step 3: Apply Integration by Parts We can apply integration by parts to the first term. Let: - \( u = \log_e x \) (first function) - \( dv = e^{\sin^{-1} x} \frac{1}{\sqrt{1 - x^2}} dx \) (second function) Then, we differentiate \( u \) and integrate \( dv \): - \( du = \frac{1}{x} dx \) - To find \( v \), we need to integrate \( dv \). ### Step 4: Change of Variable We can use the substitution \( t = \sin^{-1} x \), which gives us: \[ x = \sin t \quad \text{and} \quad dx = \cos t \, dt = \sqrt{1 - \sin^2 t} \, dt = \sqrt{1 - x^2} \, dt. \] ### Step 5: Substitute in the Integral Substituting into the integral, we have: \[ I = \int e^t \left( \frac{\log_e(\sin t)}{\cos t} + \frac{1}{\sin t} \right) \cos t \, dt. \] This simplifies to: \[ I = \int e^t \log_e(\sin t) \, dt + \int e^t \frac{1}{\sin t} \, dt. \] ### Step 6: Integrate Each Part The first integral can be integrated by parts again, and the second integral can be recognized as a standard integral. ### Step 7: Combine Results After performing the integration and simplifying, we find: \[ I = \log_e x \cdot \sin^{-1} x + C, \] where \( C \) is the constant of integration. ### Final Result Thus, the final result of the integral is: \[ \int e^{\sin^{-1} x} \left( \frac{\log_e x}{\sqrt{1 - x^2}} + \frac{1}{x} \right) dx = \log_e x \cdot \sin^{-1} x + C. \]

To solve the integral \[ \int e^{\sin^{-1} x} \left( \frac{\log_e x}{\sqrt{1 - x^2}} + \frac{1}{x} \right) dx, \] we can break it down step by step. ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

intx^(x)(1+log_(e)x) dx is equal to

int(x e^x)/((1+x)^2)dx is equal to

Evaluate: int (e^(m sin^(-1)x))/(sqrt(1-x^2))dx

int_(1//3)^(3)(1)/(x)log_(e)(|(x+x^(2)-1)/(x-x^(2)+1)|)dx is equal to

int sqrt(e^(x)-1)dx is equal to

int((1+x+x^(2))/( 1+x^(2))) e^(tan^(-1)x) dx is equal to

int_((e^x(2-x^2))/((1-x)sqrt(1-x^2))\ dx) is equal to

Evaluate: int({e^(sin^(-1) x)}^2)/(sqrt(1-x^2))dx

int_0^(1/2) e^(sin^-1x)/sqrt(1-x^2)dx

int(1)/(x cos^(2)(log_(e)x))dx

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  2. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  3. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  4. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  5. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  6. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  7. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  8. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  9. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  10. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  11. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  12. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  13. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  14. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  15. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  16. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  17. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  18. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |

  19. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |

  20. IfI(m , n)=intcos^m xsinn xdx ,t h e n7I(4,3)-4I(3,2)i se q u a lto c...

    Text Solution

    |