Home
Class 12
MATHS
int(2sinx)/(3+sin2x)\ dx...

`int(2sinx)/(3+sin2x)\ dx`

A

`(1)/(2) "In"|(2+sinx-cosx)/(2-sinx+cosx)|-(1)/(sqrt(2))tan^(-1)((sinx+cosx)/(sqrt(2)))+c`

B

`(1)/(2) "In"|(2+sinx-cosx)/(2-sinx+cosx)|-(1)/(2sqrt(2))tan^(-1)((sinx+cosx)/(sqrt(2)))+c`

C

`(1)/(4) "In"|(2+sinx-cosx)/(2-sinx+cosx)|-(1)/(sqrt(2))tan^(-1)((sinx+cosx)/(sqrt(2)))+c`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{2 \sin x}{3 + \sin 2x} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral:** Start with the original integral: \[ I = \int \frac{2 \sin x}{3 + \sin 2x} \, dx \] We can use the identity \( \sin 2x = 2 \sin x \cos x \) to rewrite \( \sin 2x \): \[ I = \int \frac{2 \sin x}{3 + 2 \sin x \cos x} \, dx \] 2. **Split the Integral:** We can express \( 2 \sin x \) as \( \sin x + \cos x + \sin x - \cos x \): \[ I = \int \left( \frac{\sin x + \cos x}{3 + 2 \sin x \cos x} + \frac{\sin x - \cos x}{3 + 2 \sin x \cos x} \right) \, dx \] 3. **Rewrite the Denominator:** We can rewrite \( 3 + 2 \sin x \cos x \) in a more convenient form: \[ 3 + 2 \sin x \cos x = 4 - 1 + 2 \sin x \cos x = 4 - (1 - 2 \sin x \cos x) \] 4. **Substitution:** Let \( t = \sin x + \cos x \) and \( u = \sin x - \cos x \). Then, we differentiate: \[ dt = (\cos x - \sin x) \, dx \quad \text{and} \quad du = (\cos x + \sin x) \, dx \] 5. **Change of Variables:** Substitute \( t \) and \( u \) into the integral: \[ I = \int \frac{dt}{4 - t^2} - \int \frac{du}{\sqrt{2^2 + u^2}} \] 6. **Integrate Each Part:** The first integral can be solved using the formula for the integral of \( \frac{1}{a^2 - x^2} \): \[ \int \frac{dt}{4 - t^2} = \frac{1}{4} \ln \left| \frac{2 + t}{2 - t} \right| + C_1 \] The second integral can be solved using the formula for the integral of \( \frac{1}{a^2 + x^2} \): \[ \int \frac{du}{\sqrt{2^2 + u^2}} = \frac{1}{2} \tan^{-1} \left( \frac{u}{2} \right) + C_2 \] 7. **Combine Results:** Combine the results from both integrals: \[ I = \frac{1}{4} \ln \left| \frac{2 + (\sin x + \cos x)}{2 - (\sin x + \cos x)} \right| - \frac{1}{2} \tan^{-1} \left( \frac{\sin x - \cos x}{2} \right) + C \] 8. **Final Result:** Therefore, the final result of the integral is: \[ I = \frac{1}{4} \ln \left| \frac{2 + \sin x + \cos x}{2 - \sin x - \cos x} \right| - \frac{1}{2} \tan^{-1} \left( \frac{\sin x - \cos x}{2} \right) + C \]

To solve the integral \( \int \frac{2 \sin x}{3 + \sin 2x} \, dx \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Rewrite the Integral:** Start with the original integral: \[ I = \int \frac{2 \sin x}{3 + \sin 2x} \, dx ...
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Multiple Correct Answers Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise Exercises (Linked Comprehension Type)|17 Videos
  • INDEFINITE INTEGRATION

    CENGAGE ENGLISH|Exercise CONCEPT APPLICATION EXERCISE 7.9|15 Videos
  • HYPERBOLA

    CENGAGE ENGLISH|Exercise COMPREHENSION TYPE|2 Videos
  • INEQUALITIES AND MODULUS

    CENGAGE ENGLISH|Exercise Single correct Answer|21 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sin4x)/(sinx)\ dx

Evaluate: int(sin(x-a))/(sinx)\ dx

Evaluate: int(sinx)/(2+sin2x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin(x-a))\ dx

Evaluate: int(sinx)/(sin(x-a))\ dx

Evaluate: int(sinx)/(sin(x-a))\ dx

CENGAGE ENGLISH-INDEFINITE INTEGRATION-EXERCISES (Single Correct Answer Type)
  1. Ifintxlog(1+1/x)dx=f(x)log(x+1)+g(x)x^2+A x+C , then f(x)=1/2x^2 (b) ...

    Text Solution

    |

  2. If I=inte^(-x)log(e^x+1)dx ,t h e nIe q u a l a+(e^(-x)+1)log(e^x+1)...

    Text Solution

    |

  3. "If " int x e^(x) cosx dx=ae^(x)(b(1-x)sinx+cx cosx)+d, then

    Text Solution

    |

  4. int x sinx sec^(3)x dx is equal to

    Text Solution

    |

  5. int e^(tan^(-1)x)(1+x+x^2)d(cot^(-1)x) is equal to (a) -e^(tan^(-1)x)...

    Text Solution

    |

  6. int e^(x)((2 tanx)/(1+tanx)+cot^(2)(x+(pi)/(4)))dx is equal to

    Text Solution

    |

  7. int e^(x^4) (x + x^3 +2x^5) e^(x^2) dx is equal to

    Text Solution

    |

  8. The value of integral inte^x(1/(sqrt(1+x^2))+1/(sqrt((1+x^2)^5)))dxi s...

    Text Solution

    |

  9. int e^(x)((x^(2)+1))/((x+1)^(2))dx is equal to

    Text Solution

    |

  10. int ((x+2)/(x+4))^2 e^x dx is equal to

    Text Solution

    |

  11. inte^(tanx)(secx-sinx)dx is equal to

    Text Solution

    |

  12. int(cosec^2x-2005)/cos^[2005]x.dx

    Text Solution

    |

  13. int(1+2x^(2)+(1)/(x))e^(x^(2)-(1)/(x))dx is equal to (a) -x e^(x^(2)...

    Text Solution

    |

  14. int e^(sin^(-1)x)((log(e)x)/(sqrt(1-x^(2)))+(1)/(x))dx is equal to

    Text Solution

    |

  15. Ifxf(x)=3f^2(x)+2,t h e nint(2x^2-12 xf(x)+f(x))/((6f(x)-x)(x^2-f(x))^...

    Text Solution

    |

  16. The value of int((ax^2-b)dx)/(xsqrt(c^2x^2-(ax^2+b)^2)) is equal to

    Text Solution

    |

  17. The value of int (dx)/((1+sqrtx)(sqrt(x-x^2))) is equal to

    Text Solution

    |

  18. int(2sinx)/(3+sin2x)\ dx

    Text Solution

    |

  19. 4int(sqrt(a^6+x^8))/x dx is equal to (a)sqrt(a^6+x^8)+(a^3)/2ln|...

    Text Solution

    |

  20. IfI(m , n)=intcos^m xsinn xdx ,t h e n7I(4,3)-4I(3,2)i se q u a lto c...

    Text Solution

    |