Home
Class 12
MATHS
In a triangle ABC, CD is the bisector of...

In a triangle `ABC, CD` is the bisector of the angle C. If `cos (C/2)` has the value `1/3 and l(CD)=6,` then `(1/a+1/b)` has the value equal to -

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will use the properties of triangles and the angle bisector theorem. ### Step-by-Step Solution: 1. **Understanding the Problem**: We have a triangle \( ABC \) with \( CD \) as the angle bisector of angle \( C \). We know that \( \cos(C/2) = \frac{1}{3} \) and the length of \( CD = 6 \). We need to find the value of \( \frac{1}{a} + \frac{1}{b} \). 2. **Using the Area of the Triangle**: The area of triangle \( ABC \) can be expressed as: \[ \text{Area} = \frac{1}{2} \times a \times b \times \sin C \] where \( a = BC \) and \( b = AC \). 3. **Finding Areas of Sub-Triangles**: The area of triangle \( ACD \) is: \[ \text{Area}_{ACD} = \frac{1}{2} \times a \times CD \times \sin\left(\frac{C}{2}\right) = \frac{1}{2} \times a \times 6 \times \sin\left(\frac{C}{2}\right) \] The area of triangle \( DCB \) is: \[ \text{Area}_{DCB} = \frac{1}{2} \times b \times CD \times \sin\left(\frac{C}{2}\right) = \frac{1}{2} \times b \times 6 \times \sin\left(\frac{C}{2}\right) \] 4. **Total Area of Triangle \( ABC \)**: Therefore, the total area can be expressed as: \[ \text{Area}_{ABC} = \text{Area}_{ACD} + \text{Area}_{DCB} = \frac{1}{2} \times a \times 6 \times \sin\left(\frac{C}{2}\right) + \frac{1}{2} \times b \times 6 \times \sin\left(\frac{C}{2}\right) \] 5. **Simplifying the Areas**: Factoring out common terms: \[ \text{Area}_{ABC} = 3 \sin\left(\frac{C}{2}\right) (a + b) \] 6. **Relating Areas**: We also have: \[ \text{Area}_{ABC} = \frac{1}{2} \times a \times b \times \sin C \] Using the identity \( \sin C = 2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{C}{2}\right) \): \[ \text{Area}_{ABC} = \frac{1}{2} \times a \times b \times 2 \sin\left(\frac{C}{2}\right) \cos\left(\frac{C}{2}\right) = a \times b \times \sin\left(\frac{C}{2}\right) \cos\left(\frac{C}{2}\right) \] 7. **Equating the Two Expressions**: Set the two expressions for the area equal: \[ 3(a + b) \sin\left(\frac{C}{2}\right) = a \times b \times \sin\left(\frac{C}{2}\right) \cos\left(\frac{C}{2}\right) \] 8. **Dividing by \( \sin\left(\frac{C}{2}\right) \)**: Assuming \( \sin\left(\frac{C}{2}\right) \neq 0 \): \[ 3(a + b) = ab \cos\left(\frac{C}{2}\right) \] 9. **Substituting \( \cos\left(\frac{C}{2}\right) \)**: We know \( \cos\left(\frac{C}{2}\right) = \frac{1}{3} \): \[ 3(a + b) = ab \cdot \frac{1}{3} \] Multiplying through by 3: \[ 9(a + b) = ab \] 10. **Rearranging**: Rearranging gives: \[ ab - 9a - 9b = 0 \] 11. **Using the Relationship**: We can express this in terms of \( \frac{1}{a} + \frac{1}{b} \): \[ \frac{1}{a} + \frac{1}{b} = \frac{a + b}{ab} \] From \( ab = 9(a + b) \): \[ \frac{1}{a} + \frac{1}{b} = \frac{a + b}{9(a + b)} = \frac{1}{9} \] 12. **Final Result**: Thus, the value of \( \frac{1}{a} + \frac{1}{b} \) is: \[ \frac{1}{a} + \frac{1}{b} = 9 \]

To solve the problem step by step, we will use the properties of triangles and the angle bisector theorem. ### Step-by-Step Solution: 1. **Understanding the Problem**: We have a triangle \( ABC \) with \( CD \) as the angle bisector of angle \( C \). We know that \( \cos(C/2) = \frac{1}{3} \) and the length of \( CD = 6 \). We need to find the value of \( \frac{1}{a} + \frac{1}{b} \). 2. **Using the Area of the Triangle**: The area of triangle \( ABC \) can be expressed as: \[ ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.9|5 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.10|8 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.7|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, a = 2, b = 3,c = 4 , then the value of cos A is

In a triangle ABC, if (sqrt3-1)a = 2b, A = 3B , then /_C is

If triangle ABC is right angled at C, then the value of sec (A+B) is

In a right angled triangle ABC, the bisector of the right angle C divides AB into segment x and y and tan((A-B)/(2))=t, then x:y is equal to

In a triangle ABC, D is a point on BC such that AD is the internal bisector of angle A . Let angle B = 2 angle C and CD = AB. Then angle A is

If in a triangle ABC, right angled at B, s-a=3, s-c=2, then the values of a and c are respectively

Consider a triangle ABC with vertex A(2, -4) . The internal bisectors of the angle B and C are x+y=2 and x- 3y = 6 respectively. Let the two bisectors meet at I .if (a, b) is incentre of the triangle ABC then (a + b) has the value equal to

In triangle ABC,the bisector of interior angle A and the bisector angle C meet at point O. Prove that angle AOC=(1)/(2)angleB

Let a,b,c be the sides of a triangle ABC, a=2c,cos(A-C)+cos B=1. then the value of C is

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to