Home
Class 12
MATHS
In Delta ABC, (sin A (a - b cos C))/(sin...

In `Delta ABC, (sin A (a - b cos C))/(sin C (c -b cos A))=`

A

`-2`

B

`-1`

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to simplify the expression: \[ \frac{\sin A (a - b \cos C)}{\sin C (c - b \cos A)} \] ### Step-by-Step Solution: 1. **Start with the given expression:** \[ \frac{\sin A (a - b \cos C)}{\sin C (c - b \cos A)} \] 2. **Use the Law of Cosines to express \(a\) and \(c\):** - According to the Law of Cosines: \[ a^2 = b^2 + c^2 - 2bc \cos A \] \[ c^2 = a^2 + b^2 - 2ab \cos C \] - From these, we can express \(a\) and \(c\) in terms of \(b\) and the angles. 3. **Substitute \(a\) and \(c\) into the expression:** - We can express \(a\) and \(c\) as: \[ a = b \cos C + c \cos B \] \[ c = a \cos B + b \cos A \] 4. **Substituting back into the expression:** - Substitute these values into the original expression: \[ \frac{\sin A \left(b \cos C + c \cos B - b \cos C\right)}{\sin C \left(a \cos B + b \cos A - b \cos A\right)} \] 5. **Simplify the expression:** - The \(b \cos C\) terms cancel out in the numerator, and the \(b \cos A\) terms cancel out in the denominator: \[ \frac{\sin A \cdot c \cos B}{\sin C \cdot a \cos B} \] 6. **Cancel \(\cos B\):** - Assuming \(\cos B \neq 0\): \[ \frac{\sin A \cdot c}{\sin C \cdot a} \] 7. **Using the sine rule:** - By the sine rule, we know that: \[ \frac{a}{\sin A} = \frac{c}{\sin C} \] - Thus, we can express \(c\) in terms of \(a\) and the sine values: \[ c = \frac{a \sin C}{\sin A} \] 8. **Final simplification:** - Substitute \(c\) back into the expression: \[ \frac{\sin A \cdot \frac{a \sin C}{\sin A}}{\sin C \cdot a} = 1 \] ### Conclusion: The expression simplifies to: \[ \frac{\sin A (a - b \cos C)}{\sin C (c - b \cos A)} = 1 \]

To solve the problem, we need to simplify the expression: \[ \frac{\sin A (a - b \cos C)}{\sin C (c - b \cos A)} \] ### Step-by-Step Solution: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In any Delta ABC, sum a(sin B - sin C) =

In any Delta ABC, sum a sin (B -C) =

Knowledge Check

  • In a Delta ABC , cos (A + B) + cos C =

    A
    2 cos C
    B
    `-1`
    C
    0
    D
    1
  • Similar Questions

    Explore conceptually related problems

    In any triangle ABC ,prove that (a-b cos C)/( c-b cos A ) = (sin C ) /( sin A)

    In a Delta ABC , 2 sinA cos B + 2 sin B cos C + 2 sin C cos A = sin A + sin B + sin C, then Delta ABC is (a) Isoceles (b) Right Angled (c) Acute (d) None of these

    If in a DeltaABC, (a cos A+b cos B+ c cos C)/(a sin B+b sin C+ c sin A)=(a+b+c)/(9R) , then prove that Delta is equilateral.

    In any triangle ABC, if (cos A + 2 cos C)/(cos A + 2 cos B) = (sin B)/(sin C) then prove that, the triangle is either isosceles or right angled.

    In DeltaABC , if sin A + sin B + sin C= 1 + sqrt2 and cos A+cos B+cosC =sqrt2 then the triangle is

    In any DeltaABC , prove that (sin B)/(sin C) = (c-a cos B)/(b-a cos C)

    In a Delta ABC, show that (a cos A+b cos B+ c cos C)/(a+b+c)= (r )/(R )