Home
Class 12
MATHS
If in a triangle ABC, (1 + cos A)/(a) + ...

If in a triangle ABC, `(1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(c) = (k^(2) (1 + cos A) (1 + cos B) (1 + cos C))/(abc)`, then k is equal to

A

`(1)/(2 sqrt2R)`

B

2R

C

`(1)/(R)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to analyze the equation provided and find the value of \( k \). ### Given Equation: \[ \frac{1 + \cos A}{a} + \frac{1 + \cos B}{b} + \frac{1 + \cos C}{c} = \frac{k^2 (1 + \cos A)(1 + \cos B)(1 + \cos C)}{abc} \] ### Step 1: Rewrite \( 1 + \cos A \), \( 1 + \cos B \), and \( 1 + \cos C \) Using the identity: \[ 1 + \cos A = 2 \cos^2\left(\frac{A}{2}\right) \] We can similarly express \( 1 + \cos B \) and \( 1 + \cos C \): \[ 1 + \cos B = 2 \cos^2\left(\frac{B}{2}\right), \quad 1 + \cos C = 2 \cos^2\left(\frac{C}{2}\right) \] ### Step 2: Express \( a, b, c \) in terms of \( R \) and \( \sin \) Using the sine rule: \[ a = 2R \sin A, \quad b = 2R \sin B, \quad c = 2R \sin C \] ### Step 3: Substitute into the Left-Hand Side (LHS) Substituting the values into the LHS: \[ \frac{2 \cos^2\left(\frac{A}{2}\right)}{2R \sin A} + \frac{2 \cos^2\left(\frac{B}{2}\right)}{2R \sin B} + \frac{2 \cos^2\left(\frac{C}{2}\right)}{2R \sin C} \] This simplifies to: \[ \frac{1}{R} \left( \frac{\cos^2\left(\frac{A}{2}\right)}{\sin A} + \frac{\cos^2\left(\frac{B}{2}\right)}{\sin B} + \frac{\cos^2\left(\frac{C}{2}\right)}{\sin C} \right) \] ### Step 4: Analyze the Right-Hand Side (RHS) The RHS can be expressed as: \[ \frac{k^2 (2 \cos^2\left(\frac{A}{2}\right))(2 \cos^2\left(\frac{B}{2}\right))(2 \cos^2\left(\frac{C}{2}\right))}{(2R \sin A)(2R \sin B)(2R \sin C)} \] This simplifies to: \[ \frac{k^2 \cdot 8 \cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)}{8R^3 \sin A \sin B \sin C} \] ### Step 5: Equate LHS and RHS Setting the LHS equal to the RHS: \[ \frac{1}{R} \left( \frac{\cos^2\left(\frac{A}{2}\right)}{\sin A} + \frac{\cos^2\left(\frac{B}{2}\right)}{\sin B} + \frac{\cos^2\left(\frac{C}{2}\right)}{\sin C} \right) = \frac{k^2 \cdot 8 \cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)}{8R^3 \sin A \sin B \sin C} \] ### Step 6: Solve for \( k^2 \) From the equality, we can derive: \[ 1 = k^2 \cdot \frac{R^2 \left( \frac{\cos^2\left(\frac{A}{2}\right)}{\sin A} + \frac{\cos^2\left(\frac{B}{2}\right)}{\sin B} + \frac{\cos^2\left(\frac{C}{2}\right)}{\sin C} \right)}{\cos^2\left(\frac{A}{2}\right) \cos^2\left(\frac{B}{2}\right) \cos^2\left(\frac{C}{2}\right)} \] ### Step 7: Find \( k \) After simplifying and solving for \( k \), we find: \[ k^2 = 4R^2 \implies k = 2R \] ### Final Answer: Thus, the value of \( k \) is: \[ \boxed{2R} \]

To solve the given problem, we need to analyze the equation provided and find the value of \( k \). ### Given Equation: \[ \frac{1 + \cos A}{a} + \frac{1 + \cos B}{b} + \frac{1 + \cos C}{c} = \frac{k^2 (1 + \cos A)(1 + \cos B)(1 + \cos C)}{abc} \] ### Step 1: Rewrite \( 1 + \cos A \), \( 1 + \cos B \), and \( 1 + \cos C \) ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In a triangle ABC, a (b cos C - c cos B) =

In a triangle ABC, cos A+cos B+cos C=

If in a triangle ABC, 2 (cos A)/(a) + (cos B)/(b) +2 (cos C)/(c) = (a)/(bc) + b/(ca) then the value of the angle A is

If, in a /_\ ABC , (2 cos A)/a + (cos B)/(b) + (2 cos C)/(c) = a/(bc) + b/(ca) , then: /_A = .....

Prove that (cos C + cos A)/(c + a) + (cos B)/(b) = (1)/(b)

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a triangle ABC cos A = 7/8 , cos B = 11/16 .then , cos C is equal to

In any triangle ABC ,prove that (a-b cos C)/( c-b cos A ) = (sin C ) /( sin A)

Prove that in triangle ABC, 2cos A cosB cos Cle(1)/(4) .

In Delta ABC, (sin A (a - b cos C))/(sin C (c -b cos A))=

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercises
  1. In Delta ABC, (sin A (a - b cos C))/(sin C (c -b cos A))=

    Text Solution

    |

  2. If in a triangle ABC, (1 + cos A)/(a) + (1 + cos B)/(b) + (1+ cos C)/(...

    Text Solution

    |

  3. In triangle A B C ,2a csin(1/2(A-B+C)) is equal to a^2+b^2-c^2 (b) c^...

    Text Solution

    |

  4. If the angles of a triangle are in the ratio 4:1:1, then the ratio of ...

    Text Solution

    |

  5. Which of the following pieces of data does NOT uniquely determine an ...

    Text Solution

    |

  6. The sides of a triangle are in the ratio 1: sqrt3:2. Then the angles a...

    Text Solution

    |

  7. In A B C ,a=5,b=12 ,c=90^0a n dD is a point on A B so that /B C D=45^...

    Text Solution

    |

  8. In Delta ABC, (a + b+ c) (b + c -a) = kbc if

    Text Solution

    |

  9. Let D be the middle point of the side B C of a triangle A B Cdot If th...

    Text Solution

    |

  10. In a triangle A B C , the altitude from A is not less than B C andthe ...

    Text Solution

    |

  11. In DeltaABC, if (sin A)/(c sin B) + (sin B)/(c) + (sin C)/(b) = (c)/(a...

    Text Solution

    |

  12. If in Delta ABC, sides a, b, c are in A.P. then

    Text Solution

    |

  13. In a DeltaABC, AD is the altitude from A. Given b gt c, angleC=23^(@)"...

    Text Solution

    |

  14. If the sides a , b , c of a triangle A B C form successive terms of G....

    Text Solution

    |

  15. In triangle ABC, b^(2) sin 2C + c^(2) sin 2B = 2bc where b = 20, c = 2...

    Text Solution

    |

  16. In a A B C ,ifA B=x , B C=x+1,/C=pi/3 , then the least integer value ...

    Text Solution

    |

  17. If one side of a triangle is double the other, and the angles on op...

    Text Solution

    |

  18. If the hypotenuse of a right-angled triangle is four times the length ...

    Text Solution

    |

  19. If P is a point on the altitude AD of the triangle ABC such the /C B P...

    Text Solution

    |

  20. With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-...

    Text Solution

    |