Home
Class 12
MATHS
In DeltaABC, if (sin A)/(c sin B) + (sin...

In `DeltaABC`, if `(sin A)/(c sin B) + (sin B)/(c) + (sin C)/(b) = (c)/(ab) + (b)/(ac) + (a)/(bc)`, then the value of angle A is

A

`120^(@)`

B

`90^(@)`

C

`60^(@)`

D

`30^(@)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given equation in triangle \( \Delta ABC \): \[ \frac{\sin A}{c \sin B} + \frac{\sin B}{c} + \frac{\sin C}{b} = \frac{c}{ab} + \frac{b}{ac} + \frac{a}{bc} \] we will follow these steps: ### Step 1: Rewrite the equation using the sine rule Using the sine rule, we know that: - \( a = 2R \sin A \) - \( b = 2R \sin B \) - \( c = 2R \sin C \) Substituting these into the equation gives: \[ \frac{\frac{a}{2R}}{c \cdot \frac{b}{2R}} + \frac{\frac{b}{2R}}{c} + \frac{\frac{c}{2R}}{b} = \frac{c}{ab} + \frac{b}{ac} + \frac{a}{bc} \] ### Step 2: Simplify the left-hand side The left-hand side simplifies to: \[ \frac{a}{2R \cdot c \cdot \frac{b}{2R}} + \frac{b}{2R \cdot c} + \frac{c}{2R \cdot b} \] This simplifies further to: \[ \frac{a}{bc} + \frac{b}{2Rc} + \frac{c}{2Rb} \] ### Step 3: Simplify the right-hand side The right-hand side is: \[ \frac{c}{ab} + \frac{b}{ac} + \frac{a}{bc} \] ### Step 4: Equate both sides Now we have: \[ \frac{a}{bc} + \frac{b}{2Rc} + \frac{c}{2Rb} = \frac{c}{ab} + \frac{b}{ac} + \frac{a}{bc} \] ### Step 5: Cancel common terms We can cancel \( \frac{a}{bc} \) from both sides: \[ \frac{b}{2Rc} + \frac{c}{2Rb} = \frac{c}{ab} + \frac{b}{ac} \] ### Step 6: Cross-multiply and simplify Cross-multiplying gives us: \[ b^2 + c^2 = 2R(c + b) \] ### Step 7: Use the Law of Cosines From the Law of Cosines, we know: \[ a^2 = b^2 + c^2 - 2bc \cos A \] ### Step 8: Substitute and solve for \( A \) Substituting \( b^2 + c^2 \) into the equation gives: \[ a^2 = 2R(c + b) - 2bc \cos A \] ### Step 9: Solve for \( \cos A \) Using the identity \( \sin^2 A + \cos^2 A = 1 \), we can find \( A \): \[ \cos A = 0 \implies A = 90^\circ \] ### Conclusion Thus, the value of angle \( A \) is: \[ \boxed{90^\circ} \]

To solve the given equation in triangle \( \Delta ABC \): \[ \frac{\sin A}{c \sin B} + \frac{\sin B}{c} + \frac{\sin C}{b} = \frac{c}{ab} + \frac{b}{ac} + \frac{a}{bc} \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In any DeltaABC , sin A + sin B + sin C =

In any DeltaABC, find sin A+sin B+ sin C.

In DeltaABC, if sin^2 A+ sin^2 B = sin^2 C , then the triangle is

In any DeltaABC, sum a^(2) (sin^2 B - sin^2 C) =

In any DeltaABC , prove that (sinA)/(sin(A+B))=a/c

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

In any DeltaABC , prove that (sin B)/(sin C) = (c-a cos B)/(b-a cos C)

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

In DeltaABC if (sinA)/(sinC)=(sin(A-B))/(sin(B-C)) , then a^(2), b^(2), c^(2) are in :

In any DeltaABC , prove that (sin B)/(sin(B+C) ) = b/a

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercises
  1. Let D be the middle point of the side B C of a triangle A B Cdot If th...

    Text Solution

    |

  2. In a triangle A B C , the altitude from A is not less than B C andthe ...

    Text Solution

    |

  3. In DeltaABC, if (sin A)/(c sin B) + (sin B)/(c) + (sin C)/(b) = (c)/(a...

    Text Solution

    |

  4. If in Delta ABC, sides a, b, c are in A.P. then

    Text Solution

    |

  5. In a DeltaABC, AD is the altitude from A. Given b gt c, angleC=23^(@)"...

    Text Solution

    |

  6. If the sides a , b , c of a triangle A B C form successive terms of G....

    Text Solution

    |

  7. In triangle ABC, b^(2) sin 2C + c^(2) sin 2B = 2bc where b = 20, c = 2...

    Text Solution

    |

  8. In a A B C ,ifA B=x , B C=x+1,/C=pi/3 , then the least integer value ...

    Text Solution

    |

  9. If one side of a triangle is double the other, and the angles on op...

    Text Solution

    |

  10. If the hypotenuse of a right-angled triangle is four times the length ...

    Text Solution

    |

  11. If P is a point on the altitude AD of the triangle ABC such the /C B P...

    Text Solution

    |

  12. With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-...

    Text Solution

    |

  13. If in Delta ABC, 8R^(2) = a^(2) + b^(2) + c^(2), then the triangle ABC...

    Text Solution

    |

  14. Let ABC be a triangle with /A=45^0dot Let P be a point on side BC with...

    Text Solution

    |

  15. In any triangle A B C ,(a^2+b^2+c^2)/(R^2) has the maximum value of 3 ...

    Text Solution

    |

  16. In triangle ABC, R (b + c) = a sqrt(bc), where R is the circumradius o...

    Text Solution

    |

  17. In A B C , if b^2+c^2=2a^2, then value of (cotA)/(cotB+cotC) is 1/2 ...

    Text Solution

    |

  18. If sin theta and -cos theta are the roots of the equation ax^(2) - bx ...

    Text Solution

    |

  19. If D is the mid-point of the side B C of triangle A B C and A D is per...

    Text Solution

    |

  20. In a triangle ABC, if cotA :cotB :cotC = 30: 19 : 6 then the sides a, ...

    Text Solution

    |