Home
Class 12
MATHS
In triangle ABC, b^(2) sin 2C + c^(2) si...

In triangle ABC, `b^(2) sin 2C + c^(2) sin 2B = 2bc` where `b = 20, c = 21`, then inradius =

A

4

B

6

C

8

D

9

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the inradius of triangle ABC given the equation \( b^2 \sin 2C + c^2 \sin 2B = 2bc \) with \( b = 20 \) and \( c = 21 \). ### Step-by-Step Solution: 1. **Write down the given equation:** \[ b^2 \sin 2C + c^2 \sin 2B = 2bc \] 2. **Substitute the values of \( b \) and \( c \):** \[ 20^2 \sin 2C + 21^2 \sin 2B = 2 \cdot 20 \cdot 21 \] Simplifying gives: \[ 400 \sin 2C + 441 \sin 2B = 840 \] 3. **Use the double angle formula for sine:** \[ \sin 2C = 2 \sin C \cos C \quad \text{and} \quad \sin 2B = 2 \sin B \cos B \] Substitute these into the equation: \[ 400 \cdot 2 \sin C \cos C + 441 \cdot 2 \sin B \cos B = 840 \] This simplifies to: \[ 800 \sin C \cos C + 882 \sin B \cos B = 840 \] 4. **Multiply the entire equation by \( 2r \):** \[ 800 \cdot 2r \sin C \cos C + 882 \cdot 2r \sin B \cos B = 840 \cdot 2r \] 5. **Use the sine rule:** From the sine rule, we know: \[ a = 2r \sin A, \quad b = 2r \sin B, \quad c = 2r \sin C \] Substitute these into the equation: \[ b^2 \cdot 2r \sin C + c^2 \cdot 2r \sin B = 2bc \] 6. **Rearranging gives:** \[ b \cos C + c \cos B = 2r \] 7. **Using the projection formula:** From the projection formula, we have: \[ a = b \cos C + c \cos B \] Therefore, we can conclude: \[ a = 2r \] 8. **Since \( a = 2r \), we can find \( a \):** To find \( a \), we use the Pythagorean theorem since we suspect that triangle ABC is a right triangle: \[ a^2 = b^2 + c^2 \] Substituting the values: \[ a^2 = 20^2 + 21^2 = 400 + 441 = 841 \] Therefore: \[ a = \sqrt{841} = 29 \] 9. **Calculate the semi-perimeter \( s \):** \[ s = \frac{a + b + c}{2} = \frac{29 + 20 + 21}{2} = 35 \] 10. **Calculate the area \( \Delta \):** The area \( \Delta \) of triangle ABC can be calculated using: \[ \Delta = \frac{1}{2} \times b \times c = \frac{1}{2} \times 20 \times 21 = 210 \] 11. **Calculate the inradius \( r \):** The inradius \( r \) is given by: \[ r = \frac{\Delta}{s} = \frac{210}{35} = 6 \] ### Final Answer: The inradius \( r \) of triangle ABC is \( 6 \).

To solve the problem, we need to find the inradius of triangle ABC given the equation \( b^2 \sin 2C + c^2 \sin 2B = 2bc \) with \( b = 20 \) and \( c = 21 \). ### Step-by-Step Solution: 1. **Write down the given equation:** \[ b^2 \sin 2C + c^2 \sin 2B = 2bc \] ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC b^(2)sin2C+c^(2)sin2B=

In triangle A B C ,b^2sin2C+c^2sin2B=2bc where b=20 ,c=21 , then inradius= (a) 4 (b) 6 (c) 8 (d) 9

lf in DeltaABC,b^(2)sin 2C + c^(2) sin 2B = 2bc,then the triangle is

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

In triangle ABC, sinA sin B + sin B sin C + sin C sin A = 9//4 and a = 2 , then the value of sqrt3 Delta , where Delta is the area of triangle, is _______

Statement I: If in a triangle ABC, sin ^(2) A+sin ^(2)B+sin ^(2)C=2, then one of the angles must be 90^(@). Statement II: In any triangle ABC cos 2A+ cos 2B+cos 2C=-1-4 cos A cos B cos C

In a right angled triangle ABC sin^(2)A+sin^(2)B+sin^(2)C=

If in a triangle ABC, (bc)/(2 cos A) = b^(2) + c^(2) - 2bc cos A then prove that the triangle must be isosceles.

In a triangle ABC, if a, b, c are in A.P. and (b)/(c) sin 2C + (c)/(b) sin 2B + (b)/(a) sin 2A + (a)/(b) sin 2B = 2 , then find the value of sin B

In a triangle ABC, if sin A sin B= (ab)/(c^(2)) , then the triangle is :

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercises
  1. In a DeltaABC, AD is the altitude from A. Given b gt c, angleC=23^(@)"...

    Text Solution

    |

  2. If the sides a , b , c of a triangle A B C form successive terms of G....

    Text Solution

    |

  3. In triangle ABC, b^(2) sin 2C + c^(2) sin 2B = 2bc where b = 20, c = 2...

    Text Solution

    |

  4. In a A B C ,ifA B=x , B C=x+1,/C=pi/3 , then the least integer value ...

    Text Solution

    |

  5. If one side of a triangle is double the other, and the angles on op...

    Text Solution

    |

  6. If the hypotenuse of a right-angled triangle is four times the length ...

    Text Solution

    |

  7. If P is a point on the altitude AD of the triangle ABC such the /C B P...

    Text Solution

    |

  8. With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-...

    Text Solution

    |

  9. If in Delta ABC, 8R^(2) = a^(2) + b^(2) + c^(2), then the triangle ABC...

    Text Solution

    |

  10. Let ABC be a triangle with /A=45^0dot Let P be a point on side BC with...

    Text Solution

    |

  11. In any triangle A B C ,(a^2+b^2+c^2)/(R^2) has the maximum value of 3 ...

    Text Solution

    |

  12. In triangle ABC, R (b + c) = a sqrt(bc), where R is the circumradius o...

    Text Solution

    |

  13. In A B C , if b^2+c^2=2a^2, then value of (cotA)/(cotB+cotC) is 1/2 ...

    Text Solution

    |

  14. If sin theta and -cos theta are the roots of the equation ax^(2) - bx ...

    Text Solution

    |

  15. If D is the mid-point of the side B C of triangle A B C and A D is per...

    Text Solution

    |

  16. In a triangle ABC, if cotA :cotB :cotC = 30: 19 : 6 then the sides a, ...

    Text Solution

    |

  17. In Delta ABC, P is an interior point such that angle PAB = 10^(@), ang...

    Text Solution

    |

  18. In DeltaABC, if AB = c is fixed, and cos A + cosB + 2 cos C = 2 then t...

    Text Solution

    |

  19. If in A B C ,A=pi/7,B=(2pi)/7,C=(4pi)/7 then a^2+b^2+c^2 must be R^2 ...

    Text Solution

    |

  20. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |