Home
Class 12
MATHS
If in A B C ,A=pi/7,B=(2pi)/7,C=(4pi)/7...

If in ` A B C ,A=pi/7,B=(2pi)/7,C=(4pi)/7` then `a^2+b^2+c^2` must be `R^2` (b) `3R^2` (c) `4R^2` (d) `7R^2`

A

`R^(2)`

B

`3R^(2)`

C

`4R^(2)`

D

`7R^(2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a^2 + b^2 + c^2 \) in triangle \( ABC \) where the angles are given as \( A = \frac{\pi}{7} \), \( B = \frac{2\pi}{7} \), and \( C = \frac{4\pi}{7} \). We will use the sine rule and properties of triangles to reach the solution. ### Step-by-Step Solution: 1. **Use the Sine Rule**: According to the sine rule, we have: \[ a = 2R \sin A, \quad b = 2R \sin B, \quad c = 2R \sin C \] where \( R \) is the circumradius of triangle \( ABC \). 2. **Substituting Values**: Substitute the expressions for \( a \), \( b \), and \( c \): \[ a^2 + b^2 + c^2 = (2R \sin A)^2 + (2R \sin B)^2 + (2R \sin C)^2 \] This simplifies to: \[ a^2 + b^2 + c^2 = 4R^2 (\sin^2 A + \sin^2 B + \sin^2 C) \] 3. **Using the Identity for Sine Squared**: We can express \( \sin^2 A \), \( \sin^2 B \), and \( \sin^2 C \) using the identity: \[ \sin^2 \theta = \frac{1 - \cos(2\theta)}{2} \] Thus, \[ \sin^2 A = \frac{1 - \cos(2A)}{2}, \quad \sin^2 B = \frac{1 - \cos(2B)}{2}, \quad \sin^2 C = \frac{1 - \cos(2C)}{2} \] 4. **Calculating \( \sin^2 A + \sin^2 B + \sin^2 C \)**: Therefore, \[ \sin^2 A + \sin^2 B + \sin^2 C = \frac{3}{2} - \frac{1}{2}(\cos(2A) + \cos(2B) + \cos(2C)) \] 5. **Finding \( \cos(2A) + \cos(2B) + \cos(2C) \)**: We need to calculate \( \cos(2A) + \cos(2B) + \cos(2C) \): - \( 2A = \frac{2\pi}{7} \) - \( 2B = \frac{4\pi}{7} \) - \( 2C = \frac{8\pi}{7} \) We can use the property of cosine: \[ \cos(2A) + \cos(2B) + \cos(2C) = \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{8\pi}{7}\right) \] It is known that: \[ \cos\left(\frac{2\pi}{7}\right) + \cos\left(\frac{4\pi}{7}\right) + \cos\left(\frac{8\pi}{7}\right) = -\frac{1}{2} \] 6. **Substituting Back**: Now substituting back into our equation: \[ \sin^2 A + \sin^2 B + \sin^2 C = \frac{3}{2} - \frac{1}{2}\left(-\frac{1}{2}\right) = \frac{3}{2} + \frac{1}{4} = \frac{6 + 1}{4} = \frac{7}{4} \] 7. **Final Calculation**: Now substituting this into our equation for \( a^2 + b^2 + c^2 \): \[ a^2 + b^2 + c^2 = 4R^2 \cdot \frac{7}{4} = 7R^2 \] ### Conclusion: Thus, the value of \( a^2 + b^2 + c^2 \) is \( 7R^2 \). ### Answer: The correct option is (d) \( 7R^2 \).

To solve the problem, we need to find the value of \( a^2 + b^2 + c^2 \) in triangle \( ABC \) where the angles are given as \( A = \frac{\pi}{7} \), \( B = \frac{2\pi}{7} \), and \( C = \frac{4\pi}{7} \). We will use the sine rule and properties of triangles to reach the solution. ### Step-by-Step Solution: 1. **Use the Sine Rule**: According to the sine rule, we have: \[ a = 2R \sin A, \quad b = 2R \sin B, \quad c = 2R \sin C ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

" In "/_ABC,a=7,b=2,B=(pi)/(4)" then "

If (3-tan^2(pi/7))/(1-tan^2(pi/7))=kcos(pi/7) then the value of k is (a)1 (b) 2 (c) 3 (d) 4

In a triangle A B C ,a=4,b=3,/_A=60^0 then c is root of the equation c^2-3c-7=0 (b) c^2+3c+7=0 (c) c^2-3c+7=0 (d) c^2+3c-7=0

In an acute angled triangle A B C ,r+r_1=r_2+r_3a n d/_B >pi/3, then (a) b+2c<2a<2b+2c (b) b+4c<4a<2b+4c (c) b+4c<4a<4b+4c (d) b+3c<3a<3b+3c

In a A B C if b=2,c=sqrt(3) and /_A=pi/6 , then value of R is equal to 1/2 b. 1 c. 2 d. 1/4

In a A B C , if r_1+r_3+r=r_2, then sec^2A+cos e c^2B' is equal to 1-cos^2C (2) 1+cos e c^2C (4) 2-cot^2C

In triangle ABC,angleA=pi/2b=4,c=3 ,then the value of R/r is equal to

In triangle A B C , if r_1=2r_2=3r_3, then a : b is equal to 5/4 (b) 4/5 (c) 7/4 (d) 4/7

With usual notations, in triangle A B C ,acos(B-C)+bcos(C-A)+c"cos"(A-B) is equal to(a) (a b c)/R^2 (b) (a b c)/(4R^2) (c) (4a b c)/(R^2) (d) (a b c)/(2R^2)

In triangle A B C , if cosA+cosB+cosC=7/4, t h e n R/r is equal to 3/4 (b) 4/3 (c) 2/3 (d) 3/2

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercises
  1. In Delta ABC, P is an interior point such that angle PAB = 10^(@), ang...

    Text Solution

    |

  2. In DeltaABC, if AB = c is fixed, and cos A + cosB + 2 cos C = 2 then t...

    Text Solution

    |

  3. If in A B C ,A=pi/7,B=(2pi)/7,C=(4pi)/7 then a^2+b^2+c^2 must be R^2 ...

    Text Solution

    |

  4. In Delta ABC, "cot"(A)/(2) + "cot" (B)/(2) + "cot" (C)/(2) is equal to

    Text Solution

    |

  5. In A B C ,(cot (A/2)+cot(B/2))(asin^2(B/2)+bsin^2(A/2))= (a) cotC (...

    Text Solution

    |

  6. In a right-angled isosceles triangle, the ratio of the circumradius an...

    Text Solution

    |

  7. In a ΔABC, a semicircle is inscribed, whose diameter lies on the side ...

    Text Solution

    |

  8. In DeltaABC, A = (2pi)/(3), b -c = 3 sqrt3 cm and " area of " Delta AB...

    Text Solution

    |

  9. In triangle ABC, let angle C = pi//2. If r is the inradius and R is ci...

    Text Solution

    |

  10. In the given figure, AB is the diameter of the circle, centered at O. ...

    Text Solution

    |

  11. In triangle A B C ,ifPdotQ ,R divides sidesB C ,A C , and A B , respec...

    Text Solution

    |

  12. If the angles of a triangle are 30^(@) and 45^(@), and the included si...

    Text Solution

    |

  13. In triangle A B C , base B C and area of triangle are fixed. The locus...

    Text Solution

    |

  14. let the area of triangle A B C be ((sqrt(3)-1))/2,b=2 , and c=(sqrt(3)...

    Text Solution

    |

  15. In DeltaABC, Delta = 6, abc = 60, r=1. Then the value of (1)/(a) + (1)...

    Text Solution

    |

  16. Triangle ABC is isosceles with AB=AC and BC=65cm. P is a point on BC s...

    Text Solution

    |

  17. In an equilateral triangle, the inradius, circumradius, and one of the...

    Text Solution

    |

  18. In triangle ABC, if cos A + cos B + cos C = (7)/(4), " then " (R)/(r) ...

    Text Solution

    |

  19. If two sides of a triangle are roots of the equation x^(2) -7x + 8 = 0...

    Text Solution

    |

  20. Given b = 2, c = sqrt3, angle A = 30^(@), then inradius of DeltaABC is

    Text Solution

    |