Home
Class 12
MATHS
Given b = 2, c = sqrt3, angle A = 30^(@)...

Given `b = 2, c = sqrt3, angle A = 30^(@)`, then inradius of `DeltaABC` is

A

`(sqrt3 -1)/(2)`

B

`(sqrt3 + 1)/(2)`

C

`(sqrt3-1)/(4)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the inradius of triangle ABC given \( b = 2 \), \( c = \sqrt{3} \), and \( \angle A = 30^\circ \), we can follow these steps: ### Step 1: Calculate side \( a \) We will use the cosine rule to find side \( a \): \[ a = \sqrt{b^2 + c^2 - 2bc \cos A} \] Substituting the values: \[ a = \sqrt{2^2 + (\sqrt{3})^2 - 2 \cdot 2 \cdot \sqrt{3} \cdot \cos(30^\circ)} \] We know that \( \cos(30^\circ) = \frac{\sqrt{3}}{2} \): \[ a = \sqrt{4 + 3 - 2 \cdot 2 \cdot \sqrt{3} \cdot \frac{\sqrt{3}}{2}} \] \[ = \sqrt{4 + 3 - 2 \cdot 2 \cdot \frac{3}{2}} \] \[ = \sqrt{4 + 3 - 6} = \sqrt{1} = 1 \] ### Step 2: Calculate the semi-perimeter \( s \) The semi-perimeter \( s \) is given by: \[ s = \frac{a + b + c}{2} \] Substituting the values: \[ s = \frac{1 + 2 + \sqrt{3}}{2} = \frac{3 + \sqrt{3}}{2} \] ### Step 3: Calculate the inradius \( r \) The formula for the inradius \( r \) is: \[ r = \frac{A}{s} \] where \( A \) is the area of the triangle. We can use the formula: \[ A = \frac{1}{2}bc \sin A \] Substituting the values: \[ A = \frac{1}{2} \cdot 2 \cdot \sqrt{3} \cdot \sin(30^\circ) \] We know that \( \sin(30^\circ) = \frac{1}{2} \): \[ A = \frac{1}{2} \cdot 2 \cdot \sqrt{3} \cdot \frac{1}{2} = \frac{\sqrt{3}}{2} \] Now substituting \( A \) and \( s \) into the inradius formula: \[ r = \frac{\frac{\sqrt{3}}{2}}{\frac{3 + \sqrt{3}}{2}} = \frac{\sqrt{3}}{3 + \sqrt{3}} \] ### Step 4: Rationalizing the denominator To simplify \( r \): \[ r = \frac{\sqrt{3}(3 - \sqrt{3})}{(3 + \sqrt{3})(3 - \sqrt{3})} = \frac{3\sqrt{3} - 3}{9 - 3} = \frac{3\sqrt{3} - 3}{6} = \frac{\sqrt{3} - 1}{2} \] Thus, the inradius \( r \) of triangle ABC is: \[ r = \frac{\sqrt{3} - 1}{2} \] ### Final Answer The inradius of triangle ABC is \( \frac{\sqrt{3} - 1}{2} \). ---

To find the inradius of triangle ABC given \( b = 2 \), \( c = \sqrt{3} \), and \( \angle A = 30^\circ \), we can follow these steps: ### Step 1: Calculate side \( a \) We will use the cosine rule to find side \( a \): \[ a = \sqrt{b^2 + c^2 - 2bc \cos A} \] Substituting the values: ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Given b=2 , c= sqrt(3), angle A= 30^@ then inradius of Delta ABC is :-

Given b=2,c=sqrt(3),/_A=30^0 , then inradius of A B C is (sqrt(3)-1)/2 (b) (sqrt(3)+1)/2 (c) (sqrt(3)-1)/4 (d) non eoft h e s e

In a DeltaABC , if b =(sqrt3-1) a and angle C=30^(@), then the value of (A-B) is equal to (All symbols used have usual meaning in the triangel.)

In a DeltaABC , if b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@) , then the value of tan.(B-C)/(2) is

If in a Delta ABC, b =sqrt3, c=1 and B-C =90^(@), then angle A is

If a=sqrt3 +1, B=30^@, C=45^@ , then c=

If a=sqrt3 +1, B=30^@, C=45^@ , then c=

In a DeltaABC if b =a (sqrt3-1) and /_C =30^@ then the measure of the angle A is

In a DeltaABC if /_A=/_B=1/2(sin^(-1)((sqrt(6)+1)/(2sqrt(3)))+sin^(-1)(1/(sqrt(3)))) and length of c=6.3^(1/4) , then the area of DeltaABC

Let the area of triangle ABC be (sqrt3 -1)//2, b = 2 and c = (sqrt3 -1), and angleA be acute. The measure of the angle C is

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercises
  1. In triangle ABC, if cos A + cos B + cos C = (7)/(4), " then " (R)/(r) ...

    Text Solution

    |

  2. If two sides of a triangle are roots of the equation x^(2) -7x + 8 = 0...

    Text Solution

    |

  3. Given b = 2, c = sqrt3, angle A = 30^(@), then inradius of DeltaABC is

    Text Solution

    |

  4. In triangle ABC, if A - B = 120^(2) and R = 8r, where R and r have the...

    Text Solution

    |

  5. A B C is an equilateral triangle of side 4c mdot If R ,r and h are the...

    Text Solution

    |

  6. A circle is inscribed in a triangle A B C touching the side A B at D s...

    Text Solution

    |

  7. The rational number which equals the number 2. 357 with recurring de...

    Text Solution

    |

  8. Let AD be a median of the Delta ABC. If AE and AF are medians of the t...

    Text Solution

    |

  9. For a triangle ABC, R = (5)/(2) and r = 1. Let D, E and F be the feet ...

    Text Solution

    |

  10. In triangle A B C ,/A=60^0,/B=40^0,a n d/C=80^0dot If P is the center ...

    Text Solution

    |

  11. If H is the othrocenter of an acute angled triangle ABC whose circumci...

    Text Solution

    |

  12. In triangle ABC, the line joining the circumcenter and incenter is par...

    Text Solution

    |

  13. In triangle ABC, line joining the circumcenter and orthocenter is para...

    Text Solution

    |

  14. In triangle A B C ,/C=(2pi)/3 and C D is the internal angle bisector o...

    Text Solution

    |

  15. In the given figure DeltaABC is equilateral on side AB produced. We ch...

    Text Solution

    |

  16. A variable triangle A B C is circumscribed about a fixed circle of uni...

    Text Solution

    |

  17. In Delta ABC, if a = 10 and b cot B + c cot C = 2(r + R) then the maxi...

    Text Solution

    |

  18. Let C be incircle of DeltaABC. If the tangents of lengths t(1),t(2) an...

    Text Solution

    |

  19. A park is in the form of a rectangle 120 mx100 mdot At the centre of t...

    Text Solution

    |

  20. In triangle ABC, if r(1) = 2r(2) = 3r(3), then a : b is equal to

    Text Solution

    |