Home
Class 12
MATHS
If in a triangle, (1-(r(1))/(r(2))) (1 -...

If in a triangle, `(1-(r_(1))/(r_(2))) (1 - (r_(1))/(r_(3))) = 2`, then the triangle is

A

right angled

B

isosceles

C

equilateral

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given equation and use the properties of the triangle's inradii. The equation provided is: \[ \left(1 - \frac{r_1}{r_2}\right) \left(1 - \frac{r_1}{r_3}\right) = 2 \] Where: - \( r_1 = \frac{\Delta}{s - a} \) - \( r_2 = \frac{\Delta}{s - b} \) - \( r_3 = \frac{\Delta}{s - c} \) Here, \( \Delta \) is the area of the triangle, and \( s \) is the semi-perimeter given by \( s = \frac{a + b + c}{2} \). ### Step-by-Step Solution: 1. **Substitute \( r_1, r_2, r_3 \) into the equation**: \[ 1 - \frac{r_1}{r_2} = 1 - \frac{\Delta/(s-a)}{\Delta/(s-b)} = 1 - \frac{s-b}{s-a} \] \[ 1 - \frac{r_1}{r_3} = 1 - \frac{\Delta/(s-a)}{\Delta/(s-c)} = 1 - \frac{s-c}{s-a} \] 2. **Rewrite the equation**: \[ \left(1 - \frac{s-b}{s-a}\right) \left(1 - \frac{s-c}{s-a}\right) = 2 \] 3. **Simplify each term**: \[ 1 - \frac{s-b}{s-a} = \frac{s-a - (s-b)}{s-a} = \frac{b-a}{s-a} \] \[ 1 - \frac{s-c}{s-a} = \frac{s-a - (s-c)}{s-a} = \frac{c-a}{s-a} \] 4. **Substituting back into the equation**: \[ \left(\frac{b-a}{s-a}\right) \left(\frac{c-a}{s-a}\right) = 2 \] \[ \frac{(b-a)(c-a)}{(s-a)^2} = 2 \] 5. **Cross-multiplying**: \[ (b-a)(c-a) = 2(s-a)^2 \] 6. **Substituting \( s = \frac{a+b+c}{2} \)**: \[ (b-a)(c-a) = 2\left(\frac{a+b+c}{2} - a\right)^2 \] \[ = 2\left(\frac{b+c-a}{2}\right)^2 = \frac{(b+c-a)^2}{2} \] 7. **Expanding both sides**: \[ (b-a)(c-a) = \frac{(b+c-a)^2}{2} \] 8. **Rearranging**: \[ 2(b-a)(c-a) = (b+c-a)^2 \] 9. **Recognizing the condition**: This condition is satisfied by a right-angled triangle, specifically when \( a^2 = b^2 + c^2 \). ### Conclusion: Thus, the triangle is a **right-angled triangle**.

To solve the problem, we need to analyze the given equation and use the properties of the triangle's inradii. The equation provided is: \[ \left(1 - \frac{r_1}{r_2}\right) \left(1 - \frac{r_1}{r_3}\right) = 2 \] Where: - \( r_1 = \frac{\Delta}{s - a} \) ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Linked comprehension type|34 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Concept application exercise 5.11|4 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

If in a triangle (r)/(r_(1)) = (r_(2))/(r_(3)) , then

If in a triangle ABC, r_(1)+r_(2)+r_(3)=9r , then the triangle is necessarily

In a triangle ABC if r_(1) = 36 , r_(2) = 18 and r_(3) = 12 , then the area of the triangle , in square units, is

In a triangle ABC if r_(1) = 8, r_(2) = 12 and r_(3) = 24, then a =

In triangle ABC, if r_(1)+r_(2)=3R and r_(2)+r_(3)=2R , then

In a triangle ABC if r_(1) = 36 , r_(2) = 18 and r_(3) = 12 , then the perimeter of the triangle , is

Value of 1/(r_(1)^2)'+ 1/(r_(2)^2)+ 1/(r_(3)^2)+ 1/(r_()^2) is :

If r_(1) +r_(2)+ r = r_(3), then show that Delta is right angled.

In a triangle , if r_(1) = 2r_(2) = 3r_(3) , then a/b + b/c + c/a is equal to

In a triangle ABC,if 1/r_1^2+1/r_2^2+1/r_3^2+1/r^2=

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Exercises
  1. A variable triangle A B C is circumscribed about a fixed circle of uni...

    Text Solution

    |

  2. In Delta ABC, if a = 10 and b cot B + c cot C = 2(r + R) then the maxi...

    Text Solution

    |

  3. Let C be incircle of DeltaABC. If the tangents of lengths t(1),t(2) an...

    Text Solution

    |

  4. A park is in the form of a rectangle 120 mx100 mdot At the centre of t...

    Text Solution

    |

  5. In triangle ABC, if r(1) = 2r(2) = 3r(3), then a : b is equal to

    Text Solution

    |

  6. If in a triangle, (1-(r(1))/(r(2))) (1 - (r(1))/(r(3))) = 2, then the ...

    Text Solution

    |

  7. If in a triangle (r)/(r(1)) = (r(2))/(r(3)), then

    Text Solution

    |

  8. In Delta ABC, I is the incentre, Area of DeltaIBC, DeltaIAC and DeltaI...

    Text Solution

    |

  9. In an acute angled triangle ABC, r + r(1) = r(2) + r(3) and angleB gt ...

    Text Solution

    |

  10. If in triangle A B C ,sumsinA/2=6/5a n dsumI I1=9 (where I1,I2a n dI3 ...

    Text Solution

    |

  11. The radii r(1), r(2), r(3) of the escribed circles of the triangle ABC...

    Text Solution

    |

  12. In ABC with usual notations, if r=1,r1=7 and R=3, the (a) ABC is equil...

    Text Solution

    |

  13. Which of the following expresses the circumference of a circle insc...

    Text Solution

    |

  14. In A B C , the median A D divides /B A C such that /B A D :/C A D=2:1...

    Text Solution

    |

  15. The area of the circle and the area of a regular polygon of n sides an...

    Text Solution

    |

  16. The ratio of the area of a regular polygon of n sides inscribed in a c...

    Text Solution

    |

  17. In any triangle, the minimum value of r(1) r(2) r(3) //r^(3) is equal ...

    Text Solution

    |

  18. If R(1) is the circumradius of the pedal triangle of a given triangle ...

    Text Solution

    |

  19. A sector O A B O of central angle theta is constructed in a circle wit...

    Text Solution

    |

  20. There is a point P inside an equilateral DeltaABC of side a whose dist...

    Text Solution

    |