Home
Class 12
MATHS
Let a = 6, b = 3 and cos (A -B) = (4)/(5...

Let a = 6, b = 3 and `cos (A -B) = (4)/(5)`
Angle C is equal to

A

`(3pi)/(4)`

B

`(pi)/(4)`

C

`(pi)/(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step-by-step, we will use the given values of \( a \), \( b \), and \( \cos(A - B) \) to find angle \( C \). ### Step 1: Write down the given information We are given: - \( a = 6 \) - \( b = 3 \) - \( \cos(A - B) = \frac{4}{5} \) ### Step 2: Use the formula for \( \cos(A - B) \) We know that: \[ \cos(A - B) = \frac{1 - \tan^2\left(\frac{A - B}{2}\right)}{1 + \tan^2\left(\frac{A - B}{2}\right)} \] Setting this equal to \( \frac{4}{5} \): \[ \frac{1 - \tan^2\left(\frac{A - B}{2}\right)}{1 + \tan^2\left(\frac{A - B}{2}\right)} = \frac{4}{5} \] ### Step 3: Cross-multiply to eliminate the fraction Cross-multiplying gives: \[ 5(1 - \tan^2\left(\frac{A - B}{2}\right)) = 4(1 + \tan^2\left(\frac{A - B}{2}\right)) \] ### Step 4: Expand and rearrange the equation Expanding both sides: \[ 5 - 5\tan^2\left(\frac{A - B}{2}\right) = 4 + 4\tan^2\left(\frac{A - B}{2}\right) \] Rearranging gives: \[ 5 - 4 = 5\tan^2\left(\frac{A - B}{2}\right) + 4\tan^2\left(\frac{A - B}{2}\right) \] \[ 1 = 9\tan^2\left(\frac{A - B}{2}\right) \] ### Step 5: Solve for \( \tan\left(\frac{A - B}{2}\right) \) Dividing both sides by 9: \[ \tan^2\left(\frac{A - B}{2}\right) = \frac{1}{9} \] Taking the square root: \[ \tan\left(\frac{A - B}{2}\right) = \frac{1}{3} \] ### Step 6: Use the formula for \( \tan\left(\frac{A - B}{2}\right) \) We know: \[ \tan\left(\frac{A - B}{2}\right) = \frac{A - B}{A + B} \cdot \cot\left(\frac{C}{2}\right) \] Substituting the known values: \[ \frac{1}{3} = \frac{6 - 3}{6 + 3} \cdot \cot\left(\frac{C}{2}\right) \] This simplifies to: \[ \frac{1}{3} = \frac{3}{9} \cdot \cot\left(\frac{C}{2}\right) \] \[ \frac{1}{3} = \frac{1}{3} \cdot \cot\left(\frac{C}{2}\right) \] ### Step 7: Solve for \( \cot\left(\frac{C}{2}\right) \) From the equation: \[ 1 = \cot\left(\frac{C}{2}\right) \] This means: \[ \cot\left(\frac{C}{2}\right) = 1 \] ### Step 8: Find angle \( C \) Since \( \cot\left(\frac{C}{2}\right) = 1 \), we have: \[ \frac{C}{2} = 45^\circ \quad \text{or} \quad \frac{C}{2} = \frac{\pi}{4} \] Thus: \[ C = 90^\circ \quad \text{or} \quad C = \frac{\pi}{2} \] ### Final Answer Therefore, angle \( C \) is: \[ C = \frac{\pi}{2} \]

To solve the problem step-by-step, we will use the given values of \( a \), \( b \), and \( \cos(A - B) \) to find angle \( C \). ### Step 1: Write down the given information We are given: - \( a = 6 \) - \( b = 3 \) - \( \cos(A - B) = \frac{4}{5} \) ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Matrix match type|6 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Numerical value type|22 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Multiple correct answer type|24 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

Let a = 6, b = 3 and cos (A -B) = (4)/(5) Value of sin A is equal to

Let a = 6, b = 3 and cos (A -B) = (4)/(5) Area (in sq. units) of the triangle is equal to

Let a,b, c are the sides opposite to angles A, B , C respectively in a Delta ABC tan""(A-B)/(2)=(a-b)/(a+b)cot ""C/2 and (a)/(sin A)=(b)/(sin B) =(c)/(sin C), If a=6,b=3 and cos (A-B) =4/5 Angle C is equal to

Let a,b, c are the sides opposite to angles A, B , C respectively in a Delta ABC tan""(A-B)/(2)=(a-b)/(a+b)cot ""C/2 and (a)/(sin A)=(b)/(sin B) =(c)/(sin C), If a=6,b=3 and cos (A-B) =4/5 Area of the trianlge is equal to

Let a,b, c are the sides opposite to angles A, B , C respectively in a Delta ABC tan""(A-B)/(2)=(a-b)/(a+b)cot ""C/2 and (a)/(sin A)=(b)/(sin B) =(c)/(sin C), If a=6,b=3 and cos (A-B) =4/5 Valus of sin A is equal to

In a DeltaABC , if a = 4, b = 5 , c = 6 then angle C is equal to

If in a /_\ ABC, a=6, b=3 and cos(A-B)= 4/5 then (A) C=pi/4 (B) A=sin^-1 2/sqrt(5) (C) ar(/_\ ABC)=9 (D) none of these

Let A,B, and C be three sets such that A={(x,y)|(x)/(cos theta)=(y)/(sintheta)=5,"where" 'theta'"is parameter"} B= {(x,y)|(x-3)/(cos phi)=(y-4)/(sin phi)=r} C= { (x,y)|(x-3)^(2)+(y-4)^(2)leR^(2)} If phi is fixed and r varies and (A cap B) =1 , then sec phi is equal to (a) (5)/(4) (b) (-5)/(4) (c) (5)/(3) (d) (-5)/(3)

In a triagnle ABC, angle B=pi/3 " and " angle C = pi/4 let D divide BC internally in the ratio 1:3 .Then (sin (angle BAD))/((Sin (angle CAD)) is equal to

A and B are positive acute angles satisfying the equations 3cos^(2)A+2cos^(2)B=4 and (3sinA)/(sinB)=(2cosB)/(cosA) , then A+2B is equal to (a) pi/4 (b) pi/3 (c) pi/6 (d) pi/2

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Linked comprehension type
  1. Given that Delta = 6, r(1) = 2,r(2)=3, r(3) = 6 Difference between t...

    Text Solution

    |

  2. Let a = 6, b = 3 and cos (A -B) = (4)/(5) Area (in sq. units) of the...

    Text Solution

    |

  3. Let a = 6, b = 3 and cos (A -B) = (4)/(5) Angle C is equal to

    Text Solution

    |

  4. Let a = 6, b = 3 and cos (A -B) = (4)/(5) Value of sin A is equal to

    Text Solution

    |

  5. Let ABC be an acute angled triangle with orthocenter H.D, E, and F are...

    Text Solution

    |

  6. Let ABC be an acute angled triangle with orthocenter H.D, E, and F are...

    Text Solution

    |

  7. Let ABC be an acute angled triangle with orthocenter H.D, E, and F are...

    Text Solution

    |

  8. Let O be a point inside a triangle A B C such that /O A B=/O B C=/O C ...

    Text Solution

    |

  9. find the principle value of cos^(-1)((sqrt3)/2)

    Text Solution

    |

  10. Let O be a point inside DeltaABC such that angleAOB = angleBOC = ang...

    Text Solution

    |

  11. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  12. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  13. Given an isoceles triangle with equal side of length b and angle alpha...

    Text Solution

    |

  14. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  15. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  16. Incircle of DeltaABC touches the sides BC, AC and AB at D, E and F, re...

    Text Solution

    |

  17. Bisectors of angles A, B and C of a triangle ABC intersect its circum...

    Text Solution

    |

  18. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  19. Internal bisectors of DeltaABC meet the circumcircle at point D, E, an...

    Text Solution

    |

  20. The area of any cyclic quadrilateral ABCD is given by A^(2) = (s -a) (...

    Text Solution

    |