Home
Class 12
MATHS
Consider a DeltaABC in which the sides a...

Consider a `DeltaABC` in which the sides are `a = (n +1), b = (n + 1), c = n` with `tan C = 4//3`, then the value of `Delta` is _____

Text Solution

AI Generated Solution

The correct Answer is:
To find the area of triangle ABC with sides \( a = n + 1 \), \( b = n + 2 \), and \( c = n \) given that \( \tan C = \frac{4}{3} \), we can follow these steps: ### Step 1: Calculate \( \cos C \) Since \( \tan C = \frac{4}{3} \), we can find \( \cos C \) using the identity: \[ \cos C = \frac{1}{\sqrt{1 + \tan^2 C}} = \frac{1}{\sqrt{1 + \left(\frac{4}{3}\right)^2}} = \frac{1}{\sqrt{1 + \frac{16}{9}}} = \frac{1}{\sqrt{\frac{25}{9}}} = \frac{3}{5} \] **Hint:** Use the Pythagorean identity to find \( \cos C \) from \( \tan C \). ### Step 2: Use the Law of Cosines Using the Law of Cosines: \[ \cos C = \frac{a^2 + b^2 - c^2}{2ab} \] Substituting \( a = n + 1 \), \( b = n + 2 \), and \( c = n \): \[ \frac{3}{5} = \frac{(n + 1)^2 + (n + 2)^2 - n^2}{2(n + 1)(n + 2)} \] ### Step 3: Expand and Simplify Expanding the squares: \[ (n + 1)^2 = n^2 + 2n + 1 \] \[ (n + 2)^2 = n^2 + 4n + 4 \] Thus, \[ (n + 1)^2 + (n + 2)^2 - n^2 = (n^2 + 2n + 1) + (n^2 + 4n + 4) - n^2 = n^2 + 6n + 5 \] Now substituting back: \[ \frac{3}{5} = \frac{n^2 + 6n + 5}{2(n + 1)(n + 2)} \] ### Step 4: Cross Multiply Cross multiplying gives: \[ 3 \cdot 2(n + 1)(n + 2) = 5(n^2 + 6n + 5) \] This simplifies to: \[ 6(n^2 + 3n + 2) = 5(n^2 + 6n + 5) \] ### Step 5: Rearranging the Equation Expanding both sides: \[ 6n^2 + 18n + 12 = 5n^2 + 30n + 25 \] Rearranging gives: \[ 6n^2 - 5n^2 + 18n - 30n + 12 - 25 = 0 \] \[ n^2 - 12n - 13 = 0 \] ### Step 6: Solve the Quadratic Equation Using the quadratic formula \( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ n = \frac{12 \pm \sqrt{(-12)^2 - 4 \cdot 1 \cdot (-13)}}{2 \cdot 1} = \frac{12 \pm \sqrt{144 + 52}}{2} = \frac{12 \pm \sqrt{196}}{2} = \frac{12 \pm 14}{2} \] This gives: \[ n = 13 \quad \text{or} \quad n = -1 \] Since \( n \) must be positive, we take \( n = 13 \). ### Step 7: Find the Sides Now substituting \( n \) back into the expressions for the sides: \[ a = n + 1 = 14, \quad b = n + 2 = 15, \quad c = n = 13 \] ### Step 8: Calculate the Area Using the formula for the area of a triangle: \[ \Delta = \frac{1}{2}ab \sin C \] We know \( \sin C = \sqrt{1 - \cos^2 C} = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \sqrt{\frac{16}{25}} = \frac{4}{5} \). Thus, \[ \Delta = \frac{1}{2} \cdot 14 \cdot 15 \cdot \frac{4}{5} \] Calculating this: \[ \Delta = \frac{1}{2} \cdot 14 \cdot 15 \cdot \frac{4}{5} = \frac{1}{2} \cdot 14 \cdot 12 = 84 \] ### Final Answer The area of triangle ABC is \( \Delta = 84 \). ---

To find the area of triangle ABC with sides \( a = n + 1 \), \( b = n + 2 \), and \( c = n \) given that \( \tan C = \frac{4}{3} \), we can follow these steps: ### Step 1: Calculate \( \cos C \) Since \( \tan C = \frac{4}{3} \), we can find \( \cos C \) using the identity: \[ \cos C = \frac{1}{\sqrt{1 + \tan^2 C}} = \frac{1}{\sqrt{1 + \left(\frac{4}{3}\right)^2}} = \frac{1}{\sqrt{1 + \frac{16}{9}}} = \frac{1}{\sqrt{\frac{25}{9}}} = \frac{3}{5} \] ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Matrix match type|6 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In triangle A B C , if cotA *cotC=1/2a n dcot B* cotC=1/(18), then the value of tanC is

If an a triangle A B C , b=3 c, a n d C-B=90^0, then find the value of tanB

In a DeltaABC , if b=sqrt(3)+1, c=sqrt(3)-1 and A=60^(@) , then the value of tan.(B-C)/(2) is

Suppose A is a complex number and n in N , such that A^n=(A+1)^n=1, then the least value of n is 3 b. 6 c. 9 d. 12

Suppose A is a complex number and n in N , such that A^n=(A+1)^n=1, then the least value of n is 3 b. 6 c. 9 d. 12

Suppose A is a complex number and n in N , such that A^n=(A+1)^n=1, then the least value of n is 3 b. 6 c. 9 d. 12

In a triangle A B CifB C=1a n dA C=2, then what is the maximum possible value of angle A ?

In an acute angled triangle A B C , if tan(A+B-C)=1 and ,sec(B+C-A)=2, find the value of A ,Ba n dCdot

The circle inscribed in the triangle ABC touches the side BC, CA and AB in the point A_(1)B_(1) and C_(1) respectively. Similarly the circle inscribed in the Delta A_(1) B_(1) C_(1) touches the sieds in A_(2), B_(2), C_(2) respectively and so on. If A_(n) B_(n) C_(n) be the nth Delta so formed, prove that its angle are pi/3-(2)^-n(A-(pi)/(3)), pi/3-(2)^-n(B-(pi)/(3)),pi/3-(2)^-n(C-(pi)/(3)). Hence prove that the triangle so formed is ultimately equilateral.

If the angle A ,Ba n dC of a triangle are in an arithmetic propression and if a , ba n dc denote the lengths of the sides opposite to A ,Ba n dC respectively, then the value of the expression a/csin2C+c/asin2A is (a) 1/2 (b) (sqrt(3))/2 (c) 1 (d) sqrt(3)

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Numerical value type
  1. In a DeltaABC, b = 12 units, c = 5 units and Delta = 30sq. units. If d...

    Text Solution

    |

  2. In DeltaABC, if r = 1, R = 3, and s = 5, then the value of a^(2) + b^(...

    Text Solution

    |

  3. Consider a DeltaABC in which the sides are a = (n +1), b = (n + 1), c ...

    Text Solution

    |

  4. In DeltaAEX, T is the midpoint of XE and P is the midpoint of ET. If D...

    Text Solution

    |

  5. In DeltaABC, the incircle touches the sides BC, CA and AB, respectivel...

    Text Solution

    |

  6. The altitudes from the angular points A,B, and C on the opposite sides...

    Text Solution

    |

  7. In Delta ABC, If angle C = 3 angle A, BC = 27, and AB =48. Then the va...

    Text Solution

    |

  8. The area of a right triangle is 6864 sq. units. If the ratio of its le...

    Text Solution

    |

  9. In Delta ABC,if cos A+sin A-2/(cosB+sin B)=0, then the value of ((a+b)...

    Text Solution

    |

  10. In DeltaABC, angle C = 2 angle A, and AC = 2BC, then the value of (a^(...

    Text Solution

    |

  11. In DeltaABC, if b(b +c) = a^(2) and c(c + a) = b^(2), then |cos A.cos ...

    Text Solution

    |

  12. The sides of triangle ABC satisfy the relations a + b - c= 2 and 2ab -...

    Text Solution

    |

  13. prove that sec^(2)(tan^(-1)2)+cosec^2(cot^(-1)3)=15

    Text Solution

    |

  14. If a, b and c represent the lengths of sides of a triangle then the po...

    Text Solution

    |

  15. In triangle ABC, sinA sin B + sin B sin C + sin C sin A = 9//4 and a =...

    Text Solution

    |

  16. In a Delta ABC, AB = 52, BC = 56, CA = 60. Let D be the foot of the a...

    Text Solution

    |

  17. Point D,E are taken on the side BC of an acute angled triangle ABC,, s...

    Text Solution

    |

  18. For a triangle ABC, R = (5)/(2) and r = 1. Let D, E and F be the feet ...

    Text Solution

    |

  19. Circumradius of DeltaABC is 3 cm and its area is 6 cm^(2). If DEF is t...

    Text Solution

    |

  20. The distance of incentre of the right-angled triangle ABC (right angle...

    Text Solution

    |