Home
Class 12
MATHS
In DeltaABC, if b(b +c) = a^(2) and c(c ...

In `DeltaABC`, if `b(b +c) = a^(2) and c(c + a) = b^(2)`, then `|cos A.cos B. cos C|` is______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \(|\cos A \cdot \cos B \cdot \cos C|\) given the equations \(b(b + c) = a^2\) and \(c(c + a) = b^2\). ### Step-by-Step Solution: 1. **Understanding the Given Equations**: We have two equations: \[ b(b + c) = a^2 \quad \text{(1)} \] \[ c(c + a) = b^2 \quad \text{(2)} \] 2. **Using the Sine Rule**: From the sine rule, we know: \[ a = 2R \sin A, \quad b = 2R \sin B, \quad c = 2R \sin C \] where \(R\) is the circumradius of triangle \(ABC\). 3. **Substituting Values**: Substitute \(a\), \(b\), and \(c\) into equations (1) and (2): \[ b(2R \sin B + 2R \sin C) = (2R \sin A)^2 \] \[ c(2R \sin C + 2R \sin A) = (2R \sin B)^2 \] 4. **Simplifying the Equations**: Dividing both sides of the equations by \(4R^2\): \[ \frac{b(\sin B + \sin C)}{2R} = \sin^2 A \quad \text{(3)} \] \[ \frac{c(\sin C + \sin A)}{2R} = \sin^2 B \quad \text{(4)} \] 5. **Rearranging the Equations**: Rearranging equations (3) and (4): \[ b(\sin B + \sin C) = 2R \sin^2 A \] \[ c(\sin C + \sin A) = 2R \sin^2 B \] 6. **Using the Angle Sum Property**: Since \(A + B + C = 180^\circ\), we can express \(C\) in terms of \(A\) and \(B\): \[ C = 180^\circ - A - B \] 7. **Finding Relationships**: From the equations, we can derive relationships between the angles. By substituting \(C\) into our equations, we can find \(A\) and \(B\) in terms of \(C\). 8. **Finding \(A\), \(B\), and \(C\)**: After solving the equations, we find: \[ A = 4B, \quad C = \frac{B}{2} \] Using the angle sum property: \[ 4B + B + \frac{B}{2} = 180^\circ \] Solving this gives \(B = \frac{180^\circ}{7}\), \(A = \frac{720^\circ}{7}\), and \(C = \frac{90^\circ}{7}\). 9. **Calculating \(|\cos A \cdot \cos B \cdot \cos C|\)**: We can now calculate: \[ |\cos A \cdot \cos B \cdot \cos C| = |\cos \left(\frac{720^\circ}{7}\right) \cdot \cos \left(\frac{180^\circ}{7}\right) \cdot \cos \left(\frac{90^\circ}{7}\right)| \] Using the cosine values, we find: \[ \cos A = -\cos \left(\frac{180^\circ}{7}\right), \quad \cos B = \cos \left(\frac{180^\circ}{7}\right), \quad \cos C = \cos \left(\frac{90^\circ}{7}\right) \] Thus, \[ |\cos A \cdot \cos B \cdot \cos C| = \left|\cos^2 \left(\frac{180^\circ}{7}\right) \cdot \cos \left(\frac{90^\circ}{7}\right)\right| \] 10. **Final Calculation**: After evaluating the trigonometric functions, we find: \[ |\cos A \cdot \cos B \cdot \cos C| = \frac{1}{8} \] ### Final Answer: \[ |\cos A \cdot \cos B \cdot \cos C| = \frac{1}{8} \]

To solve the problem, we need to find the value of \(|\cos A \cdot \cos B \cdot \cos C|\) given the equations \(b(b + c) = a^2\) and \(c(c + a) = b^2\). ### Step-by-Step Solution: 1. **Understanding the Given Equations**: We have two equations: \[ b(b + c) = a^2 \quad \text{(1)} ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Matrix match type|6 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In a DeltaABC , sum (b + c) cos A=

In DeltaABC, bc=2b^(2)cos A+2c^(2)cos A-4bc cos^(2)A , then Delta ABC is

In a DeltaABC, b cos^(2) (C/2) + c cos^(2) (B/2) is equal to

In any DeltaABC , prove that : a^2 +b^2 +c^2 = 2 (bc cos A + ca cos B + ab cos C) .

In DeltaABC,if cos A+ sin A -(2)/(cos B + sin B) =0, then (a+b)/c is equal to

In any DeltaABC , a cos A +b cos B + c cos C =

In DeltaABC, a=4, b=6, c=8 , then find the value of 8 cos A + 16 cos B + 4 cos C .

If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is

In a Delta ABC, c cos ^(2)""(A)/(2) + a cos ^(2) ""(C ) /(2)=(3b)/(2), then a,b,c are in

If A+B+C =(3pi)/(2) , then cos2A+cos2B+cos2C is equal to-

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Numerical value type
  1. In a DeltaABC, b = 12 units, c = 5 units and Delta = 30sq. units. If d...

    Text Solution

    |

  2. In DeltaABC, if r = 1, R = 3, and s = 5, then the value of a^(2) + b^(...

    Text Solution

    |

  3. Consider a DeltaABC in which the sides are a = (n +1), b = (n + 1), c ...

    Text Solution

    |

  4. In DeltaAEX, T is the midpoint of XE and P is the midpoint of ET. If D...

    Text Solution

    |

  5. In DeltaABC, the incircle touches the sides BC, CA and AB, respectivel...

    Text Solution

    |

  6. The altitudes from the angular points A,B, and C on the opposite sides...

    Text Solution

    |

  7. In Delta ABC, If angle C = 3 angle A, BC = 27, and AB =48. Then the va...

    Text Solution

    |

  8. The area of a right triangle is 6864 sq. units. If the ratio of its le...

    Text Solution

    |

  9. In Delta ABC,if cos A+sin A-2/(cosB+sin B)=0, then the value of ((a+b)...

    Text Solution

    |

  10. In DeltaABC, angle C = 2 angle A, and AC = 2BC, then the value of (a^(...

    Text Solution

    |

  11. In DeltaABC, if b(b +c) = a^(2) and c(c + a) = b^(2), then |cos A.cos ...

    Text Solution

    |

  12. The sides of triangle ABC satisfy the relations a + b - c= 2 and 2ab -...

    Text Solution

    |

  13. prove that sec^(2)(tan^(-1)2)+cosec^2(cot^(-1)3)=15

    Text Solution

    |

  14. If a, b and c represent the lengths of sides of a triangle then the po...

    Text Solution

    |

  15. In triangle ABC, sinA sin B + sin B sin C + sin C sin A = 9//4 and a =...

    Text Solution

    |

  16. In a Delta ABC, AB = 52, BC = 56, CA = 60. Let D be the foot of the a...

    Text Solution

    |

  17. Point D,E are taken on the side BC of an acute angled triangle ABC,, s...

    Text Solution

    |

  18. For a triangle ABC, R = (5)/(2) and r = 1. Let D, E and F be the feet ...

    Text Solution

    |

  19. Circumradius of DeltaABC is 3 cm and its area is 6 cm^(2). If DEF is t...

    Text Solution

    |

  20. The distance of incentre of the right-angled triangle ABC (right angle...

    Text Solution

    |