Home
Class 12
MATHS
In triangle ABC, sinA sin B + sin B sin ...

In triangle ABC, `sinA sin B + sin B sin C + sin C sin A = 9//4 and a = 2`, then the value of `sqrt3 Delta`, where `Delta` is the area of triangle, is _______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \sqrt{3} \Delta \) where \( \Delta \) is the area of triangle ABC, given that: \[ \sin A \sin B + \sin B \sin C + \sin C \sin A = \frac{9}{4} \] and \( a = 2 \). ### Step 1: Use the given equation Starting with the equation: \[ \sin A \sin B + \sin B \sin C + \sin C \sin A = \frac{9}{4} \] We can multiply both sides by 4: \[ 4(\sin A \sin B + \sin B \sin C + \sin C \sin A) = 9 \] ### Step 2: Apply the sine product-to-sum identities Using the product-to-sum identities, we can express the sine products in terms of cosine: \[ \sin A \sin B = \frac{1}{2} (\cos(A-B) - \cos(A+B)) \] \[ \sin B \sin C = \frac{1}{2} (\cos(B-C) - \cos(B+C)) \] \[ \sin C \sin A = \frac{1}{2} (\cos(C-A) - \cos(C+A)) \] Substituting these into the equation gives: \[ 2\left(\cos(A-B) + \cos(B-C) + \cos(C-A) - \left(\cos(A+B) + \cos(B+C) + \cos(C+A)\right)\right) = 9 \] ### Step 3: Analyze the triangle properties Since \( A + B + C = 180^\circ \), we can express \( \cos(A+B) \) as \( -\cos C \), \( \cos(B+C) \) as \( -\cos A \), and \( \cos(C+A) \) as \( -\cos B \). This leads to: \[ \cos(A-B) + \cos(B-C) + \cos(C-A) = \frac{9}{2} \] ### Step 4: Use the maximum value of cosine The maximum value of \( \cos \) is 1. Therefore, for the sum of three cosines to equal \( \frac{9}{2} \), each must equal 1: \[ \cos(A-B) = 1, \quad \cos(B-C) = 1, \quad \cos(C-A) = 1 \] This implies: \[ A = B = C \] Thus, triangle ABC is equilateral. ### Step 5: Calculate the area of the equilateral triangle For an equilateral triangle with side length \( a = 2 \), the area \( \Delta \) is given by: \[ \Delta = \frac{\sqrt{3}}{4} a^2 \] Substituting \( a = 2 \): \[ \Delta = \frac{\sqrt{3}}{4} (2^2) = \frac{\sqrt{3}}{4} \cdot 4 = \sqrt{3} \] ### Step 6: Calculate \( \sqrt{3} \Delta \) Now, we need to find \( \sqrt{3} \Delta \): \[ \sqrt{3} \Delta = \sqrt{3} \cdot \sqrt{3} = 3 \] ### Final Answer Thus, the value of \( \sqrt{3} \Delta \) is: \[ \boxed{3} \]

To solve the problem, we need to find the value of \( \sqrt{3} \Delta \) where \( \Delta \) is the area of triangle ABC, given that: \[ \sin A \sin B + \sin B \sin C + \sin C \sin A = \frac{9}{4} \] and \( a = 2 \). ### Step 1: Use the given equation ...
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (Single correct Answer type)|2 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Archives (JEE Advanced)|3 Videos
  • PROPERTIES AND SOLUTIONS OF TRIANGLE

    CENGAGE ENGLISH|Exercise Matrix match type|6 Videos
  • PROGRESSION AND SERIES

    CENGAGE ENGLISH|Exercise ARCHIVES (MATRIX MATCH TYPE )|1 Videos
  • RELATIONS AND FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives(Matrix Match Type)|1 Videos

Similar Questions

Explore conceptually related problems

In any triangle ABC, if sin A , sin B, sin C are in AP, then the maximum value of tan ""B/2 is

In any Delta ABC, sum a(sin B - sin C) =

In a triangle ABC, sin A- cos B = Cos C , then angle B is

In a triangle ABC, 2 ac sin (1/2(A-B + C)) =

In a triangle ABC , if cos A cos B + sin A sin B sin C = 1 , then a:b:c is equal to

If in a triangle ABC sin A = 4/5 and sin B = 12/13 , then sin C =

If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C , then the angle A is

If in a triangle ABC, 3 sin A = 6 sin B=2sqrt3sin C , then the angle A is

If in a triangle ABC ,a sin A=b sin B, then the triangle, is

In Delta ABC , if a = 3, b = 4 and sin B = 1 , find sin A

CENGAGE ENGLISH-PROPERTIES AND SOLUTIONS OF TRIANGLE-Numerical value type
  1. In a DeltaABC, b = 12 units, c = 5 units and Delta = 30sq. units. If d...

    Text Solution

    |

  2. In DeltaABC, if r = 1, R = 3, and s = 5, then the value of a^(2) + b^(...

    Text Solution

    |

  3. Consider a DeltaABC in which the sides are a = (n +1), b = (n + 1), c ...

    Text Solution

    |

  4. In DeltaAEX, T is the midpoint of XE and P is the midpoint of ET. If D...

    Text Solution

    |

  5. In DeltaABC, the incircle touches the sides BC, CA and AB, respectivel...

    Text Solution

    |

  6. The altitudes from the angular points A,B, and C on the opposite sides...

    Text Solution

    |

  7. In Delta ABC, If angle C = 3 angle A, BC = 27, and AB =48. Then the va...

    Text Solution

    |

  8. The area of a right triangle is 6864 sq. units. If the ratio of its le...

    Text Solution

    |

  9. In Delta ABC,if cos A+sin A-2/(cosB+sin B)=0, then the value of ((a+b)...

    Text Solution

    |

  10. In DeltaABC, angle C = 2 angle A, and AC = 2BC, then the value of (a^(...

    Text Solution

    |

  11. In DeltaABC, if b(b +c) = a^(2) and c(c + a) = b^(2), then |cos A.cos ...

    Text Solution

    |

  12. The sides of triangle ABC satisfy the relations a + b - c= 2 and 2ab -...

    Text Solution

    |

  13. prove that sec^(2)(tan^(-1)2)+cosec^2(cot^(-1)3)=15

    Text Solution

    |

  14. If a, b and c represent the lengths of sides of a triangle then the po...

    Text Solution

    |

  15. In triangle ABC, sinA sin B + sin B sin C + sin C sin A = 9//4 and a =...

    Text Solution

    |

  16. In a Delta ABC, AB = 52, BC = 56, CA = 60. Let D be the foot of the a...

    Text Solution

    |

  17. Point D,E are taken on the side BC of an acute angled triangle ABC,, s...

    Text Solution

    |

  18. For a triangle ABC, R = (5)/(2) and r = 1. Let D, E and F be the feet ...

    Text Solution

    |

  19. Circumradius of DeltaABC is 3 cm and its area is 6 cm^(2). If DEF is t...

    Text Solution

    |

  20. The distance of incentre of the right-angled triangle ABC (right angle...

    Text Solution

    |