Home
Class 12
MATHS
Find the range of 12sintheta-9sin^2theta...

Find the range of `12sintheta-9sin^2theta`

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(\theta) = 12 \sin \theta - 9 \sin^2 \theta \), we can follow these steps: ### Step 1: Rewrite the function Let \( y = f(\theta) = 12 \sin \theta - 9 \sin^2 \theta \). ### Step 2: Substitute \( x = \sin \theta \) Since \( \sin \theta \) can take values between -1 and 1, we can substitute \( x \) for \( \sin \theta \): \[ y = 12x - 9x^2 \] ### Step 3: Rearrange the expression Rearranging gives us: \[ y = -9x^2 + 12x \] ### Step 4: Complete the square To find the maximum and minimum values, we can complete the square: \[ y = -9(x^2 - \frac{12}{9}x) \] \[ = -9\left(x^2 - \frac{4}{3}x\right) \] Now we complete the square inside the parentheses: \[ = -9\left(x^2 - \frac{4}{3}x + \left(\frac{2}{3}\right)^2 - \left(\frac{2}{3}\right)^2\right) \] \[ = -9\left(\left(x - \frac{2}{3}\right)^2 - \frac{4}{9}\right) \] \[ = -9\left(x - \frac{2}{3}\right)^2 + 4 \] ### Step 5: Identify the range The term \(-9\left(x - \frac{2}{3}\right)^2\) is always less than or equal to 0, and its maximum value occurs when \( x = \frac{2}{3} \): - When \( x = \frac{2}{3} \), \( y = 4 \). - When \( x = -1 \), \( y = 12(-1) - 9(-1)^2 = -12 - 9 = -21 \). - When \( x = 1 \), \( y = 12(1) - 9(1)^2 = 12 - 9 = 3 \). Thus, the maximum value of \( y \) is \( 4 \) and the minimum value is \( -21 \). ### Conclusion The range of the function \( f(\theta) = 12 \sin \theta - 9 \sin^2 \theta \) is: \[ \text{Range} = [-21, 4] \] ---

To find the range of the function \( f(\theta) = 12 \sin \theta - 9 \sin^2 \theta \), we can follow these steps: ### Step 1: Rewrite the function Let \( y = f(\theta) = 12 \sin \theta - 9 \sin^2 \theta \). ### Step 2: Substitute \( x = \sin \theta \) Since \( \sin \theta \) can take values between -1 and 1, we can substitute \( x \) for \( \sin \theta \): \[ y = 12x - 9x^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.7|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

5sintheta.sin8theta=

If sintheta=(12)/(13) , find the value of (sin^2theta-cos^2theta)/(2sinthetacostheta)xx1/(tan^2theta)

If theta is an acute angle and sintheta=costheta , find the value of 2tan^2theta+sin^2theta-1

If cos e c\ theta=(13)/(12) , find the value of (2sintheta-3\ cos\ theta)/(4sintheta-9costheta)

Write the maximum value of 12 sintheta-9sin^2\ \ thetadot

Given : 4 sintheta = 3 cos theta , find the value of: 4 cos^2theta-3sin^2 theta +2

If sintheta=(1)/(3) ,then find the value of sintheta*cos^(2)theta+"cosec"theta .

sintheta=(1)/(sqrt(2)) ,then find the value of 3sin ^(2)theta-4sin^(3)theta*costheta .

If sintheta=(3)/(4) ,then find the value of (2cos^(2)theta-3sin^(2)theta) .

If theta lies in the second quadrant and tan theta=(-5)/(12) , find the value of (2cos theta)/(1-sin theta) .