Home
Class 12
MATHS
If sin^2theta1+sin^2theta2+...+sin^2thet...

If `sin^2theta_1+sin^2theta_2+...+sin^2theta_n=0`, then find the minimum value of `costheta_1+costheta_2+...+costheta_n`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the condition given and find the minimum value of the sum of cosines. ### Step-by-Step Solution: 1. **Understanding the Condition**: We are given that: \[ \sin^2 \theta_1 + \sin^2 \theta_2 + \ldots + \sin^2 \theta_n = 0 \] Since \(\sin^2 \theta_i \geq 0\) for all \(i\), the only way this sum can equal zero is if each individual term is zero: \[ \sin^2 \theta_i = 0 \quad \text{for all } i \] This implies: \[ \sin \theta_i = 0 \quad \text{for all } i \] 2. **Finding the Values of \(\theta_i\)**: The sine function is zero at integer multiples of \(\pi\): \[ \theta_i = k_i \pi \quad \text{for some integer } k_i \] Therefore, each \(\theta_i\) can be expressed as: \[ \theta_i = 0, \pi, 2\pi, \ldots \] 3. **Calculating \(\cos \theta_i\)**: The cosine function takes the following values at these angles: - \(\cos(0) = 1\) - \(\cos(\pi) = -1\) - \(\cos(2\pi) = 1\) - etc. Thus, the values of \(\cos \theta_i\) can either be \(1\) or \(-1\). 4. **Finding the Sum of Cosines**: We need to find the minimum value of the sum: \[ \cos \theta_1 + \cos \theta_2 + \ldots + \cos \theta_n \] Since each \(\cos \theta_i\) can be either \(1\) or \(-1\), we can denote the number of angles where \(\cos \theta_i = -1\) as \(m\) (where \(m\) can range from \(0\) to \(n\)). The sum can be expressed as: \[ \text{Sum} = (n - m) \cdot 1 + m \cdot (-1) = n - 2m \] 5. **Minimizing the Sum**: To minimize the sum \(n - 2m\), we should maximize \(m\). The maximum value of \(m\) is \(n\) (if all angles are such that \(\cos \theta_i = -1\)): \[ \text{Minimum Sum} = n - 2n = -n \] ### Conclusion: Thus, the minimum value of \(\cos \theta_1 + \cos \theta_2 + \ldots + \cos \theta_n\) is: \[ \boxed{-n} \]

To solve the problem, we need to analyze the condition given and find the minimum value of the sum of cosines. ### Step-by-Step Solution: 1. **Understanding the Condition**: We are given that: \[ \sin^2 \theta_1 + \sin^2 \theta_2 + \ldots + \sin^2 \theta_n = 0 ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.7|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sin^2theta_1+sin^2theta_2+sin^2theta_3=0, then which of the following is not the possible value of costheta_1+costheta_2+costheta_3? (a) 3 (b) -3 (c) -1 (d) -2

If sin^2theta_1+sin^2theta_2+sin^2theta_3=0, then which of the following is not the possible value of costheta_1+costheta_2+costheta_3? 3 (b) -3 (c) -1 (d) -2

If sin theta+costheta=1, then the minimum value of (1+cosectheta)(1+sectheta) is

sintheta=(1)/(sqrt(2)) ,then find the value of 3sin ^(2)theta-4sin^(3)theta*costheta .

2sin^(2)theta + 3 costheta =0

If 2sin^(2)theta=3costheta , where 0lethetale2pi , then find the value of theta .

if sintheta-costheta=0, then the value of (sin^4theta+cos^4theta)

Minimum value of cos2theta+costheta for all real value of theta is

If sintheta+costheta=1 , then the value of sin2theta is

If sintheta-costheta=1, then the value of sin^3theta-cos^3theta is __________