Home
Class 12
MATHS
Find the range of f(x)=sqrt(4-sqrt(1+tan...

Find the range of `f(x)=sqrt(4-sqrt(1+tan^2x))`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \sqrt{4 - \sqrt{1 + \tan^2 x}} \), we can follow these steps: ### Step 1: Simplify the expression inside the square root We know that \( 1 + \tan^2 x = \sec^2 x \). Therefore, we can rewrite the function as: \[ f(x) = \sqrt{4 - \sqrt{\sec^2 x}} \] ### Step 2: Rewrite \( \sqrt{\sec^2 x} \) Since \( \sec x = \frac{1}{\cos x} \), we have: \[ \sqrt{\sec^2 x} = |\sec x| \] Thus, the function becomes: \[ f(x) = \sqrt{4 - |\sec x|} \] ### Step 3: Determine the range of \( |\sec x| \) The secant function \( \sec x \) has a range of \( (-\infty, -1] \cup [1, \infty) \). Therefore, the absolute value \( |\sec x| \) has a range of: \[ [1, \infty) \] ### Step 4: Analyze the expression \( 4 - |\sec x| \) Since \( |\sec x| \geq 1 \), we can find the minimum value of \( 4 - |\sec x| \): \[ 4 - |\sec x| \leq 4 - 1 = 3 \] Thus, the maximum value of \( 4 - |\sec x| \) is 3, and it can decrease without bound as \( |\sec x| \) increases. ### Step 5: Determine the range of \( f(x) \) Now, we need to find the range of \( f(x) = \sqrt{4 - |\sec x|} \). Since \( 4 - |\sec x| \) can take values from \( 3 \) (when \( |\sec x| = 1 \)) to \( -\infty \) (as \( |\sec x| \) approaches infinity), we have: \[ 4 - |\sec x| \in (-\infty, 3] \] However, since we are taking the square root, we need to ensure that \( 4 - |\sec x| \) is non-negative: \[ 4 - |\sec x| \geq 0 \implies |\sec x| \leq 4 \] This means \( |\sec x| \) can take values from \( 1 \) to \( 4 \). ### Step 6: Find the corresponding values of \( f(x) \) When \( |\sec x| = 1 \): \[ f(x) = \sqrt{4 - 1} = \sqrt{3} \] When \( |\sec x| = 4 \): \[ f(x) = \sqrt{4 - 4} = 0 \] Thus, the function \( f(x) \) can take values from \( 0 \) to \( \sqrt{3} \). ### Conclusion The range of the function \( f(x) \) is: \[ [0, \sqrt{3}] \]

To find the range of the function \( f(x) = \sqrt{4 - \sqrt{1 + \tan^2 x}} \), we can follow these steps: ### Step 1: Simplify the expression inside the square root We know that \( 1 + \tan^2 x = \sec^2 x \). Therefore, we can rewrite the function as: \[ f(x) = \sqrt{4 - \sqrt{\sec^2 x}} \] ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.7|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=sqrt(1-sqrt(x^2-6x+9))

Find the range of f(x)sqrt(x-1)+sqrt(5-1)

Find the range of f(x)=sqrt(x-1)+sqrt(5-x)

Find the range of f(x) = sqrt(x-1)+sqrt(5-x)

Find the range of f(x)=1/(1-3sqrt(1-sin^2x))

Find the range of f(x)=1/(1-3sqrt(1-sin^2x))

Find the range of f(x)=sqrt(cos^(-1)sqrt((1-x^2))-sin^(-1)x)

Find the range of f(x)=tan^(-1)sqrt((x^2-2x+2))

Find the range of f(x)=tan^(-1)sqrt((x^2-2x+2))

Find the range of f(x)=cos^(-1)((sqrt(1+2x^2))/(1+x^2))