Home
Class 12
MATHS
Find the range of f(x)=cos^4x+sin^2x-1....

Find the range of `f(x)=cos^4x+sin^2x-1`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the range of the function \( f(x) = \cos^4 x + \sin^2 x - 1 \), we can follow these steps: ### Step 1: Rewrite the function We start with the given function: \[ f(x) = \cos^4 x + \sin^2 x - 1 \] We know that \( \sin^2 x = 1 - \cos^2 x \). Substituting this into the function gives: \[ f(x) = \cos^4 x + (1 - \cos^2 x) - 1 \] This simplifies to: \[ f(x) = \cos^4 x - \cos^2 x \] ### Step 2: Let \( y = \cos^2 x \) Now, let \( y = \cos^2 x \). Since \( \cos^2 x \) ranges from 0 to 1, we have: \[ f(x) = y^2 - y \] where \( 0 \leq y \leq 1 \). ### Step 3: Analyze the function \( g(y) = y^2 - y \) Next, we analyze the quadratic function \( g(y) = y^2 - y \). This is a downward-opening parabola (since the coefficient of \( y^2 \) is positive). ### Step 4: Find the vertex of the parabola To find the vertex of the parabola, we use the formula for the vertex \( y = -\frac{b}{2a} \): \[ y = -\frac{-1}{2 \cdot 1} = \frac{1}{2} \] Now, we evaluate \( g(y) \) at \( y = \frac{1}{2} \): \[ g\left(\frac{1}{2}\right) = \left(\frac{1}{2}\right)^2 - \frac{1}{2} = \frac{1}{4} - \frac{1}{2} = -\frac{1}{4} \] ### Step 5: Evaluate the endpoints Next, we evaluate \( g(y) \) at the endpoints of the interval: - At \( y = 0 \): \[ g(0) = 0^2 - 0 = 0 \] - At \( y = 1 \): \[ g(1) = 1^2 - 1 = 0 \] ### Step 6: Determine the range From our calculations: - The minimum value of \( g(y) \) occurs at \( y = \frac{1}{2} \) and is \( -\frac{1}{4} \). - The maximum values occur at the endpoints \( y = 0 \) and \( y = 1 \), both yielding \( 0 \). Thus, the range of \( f(x) \) is: \[ \text{Range of } f(x) = \left[-\frac{1}{4}, 0\right] \] ### Final Answer The range of the function \( f(x) = \cos^4 x + \sin^2 x - 1 \) is: \[ \boxed{[-\frac{1}{4}, 0]} \]

To find the range of the function \( f(x) = \cos^4 x + \sin^2 x - 1 \), we can follow these steps: ### Step 1: Rewrite the function We start with the given function: \[ f(x) = \cos^4 x + \sin^2 x - 1 \] We know that \( \sin^2 x = 1 - \cos^2 x \). Substituting this into the function gives: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.7|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Find the range of f(x)=cos^2x+sec^2x .

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x)=sin^2x-sinx+1.

Find the range of f(x)=sin^2x-3sinx+2

Find the range of f(x)= sin^-1x+tan^-1x+cos^-1x

Find the range of f(x) =sin^2x-3sinx+2 .

Find the range of f(x) = (sin^(-1) x)^(2) + 2pi cos^(-1) x + pi^(2)

Find the range of f(x) = sin^(-1) x + tan^(-1) x + cos^(-1) x

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot

Find the range of f(x)=sin^(-1)x+tan^(-1)x+cos^(-1)xdot