Home
Class 12
MATHS
Find the minimum value of the function ...

Find the minimum value of the function
`f(x)=(1+sinx)(1+cosx),AAx inR`.

Text Solution

Verified by Experts

The correct Answer is:
0

Since `0le1+sinxle2" and "0le+cosxle2`,
minium value of f(x) is 0, when any one of `(1+sinx)" or "(1+cosx)` is zero.
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.7|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

Minimum value of the function f(x)= (1/x)^(1//x) is:

Find the minimum value of the function f(x) = (pi^(2))/(16 cot^(-1) (-x)) - cot^(-1) x

Find sum of maximum and minimum values of the function f(x) = sin^2x + 8cosx - 7

Find the minimum value of the function f(x)=(pi^2)/(16cot^(-1)(-x))-cot^(-1)x

The extremum values of the function f(x)=1/(sinx+ 4)-1/ (cosx-4) , where x in R

Find the domain of the function f(x)=1/(1+2sinx)

Find the domain of the function f(x)=1/(1+2sinx)

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,\ pi] .

Find the absolute maximum and minimum values of the function f given by f(x)=cos^2x+sinx , x in [0,pi]

Integrate the functions (sinx)/(1+cosx)