Home
Class 12
MATHS
If a^2+2a+cosec^2(pi/2(a+x))=0, then, fi...

If `a^2+2a+cosec^2(pi/2(a+x))=0`, then, find the values of a and x.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( a^2 + 2a + \csc^2\left(\frac{\pi}{2}(a+x)\right) = 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ a^2 + 2a + \csc^2\left(\frac{\pi}{2}(a+x)\right) = 0 \] We can add and subtract 1 to the equation: \[ a^2 + 2a + 1 + \csc^2\left(\frac{\pi}{2}(a+x)\right) - 1 = 0 \] This simplifies to: \[ (a + 1)^2 + \csc^2\left(\frac{\pi}{2}(a+x)\right) - 1 = 0 \] ### Step 2: Use the identity for cosecant Recall that \(\csc^2\theta - 1 = \cot^2\theta\). Therefore, we can rewrite the equation as: \[ (a + 1)^2 + \cot^2\left(\frac{\pi}{2}(a+x)\right) = 0 \] ### Step 3: Analyze the equation Both \( (a + 1)^2 \) and \( \cot^2\left(\frac{\pi}{2}(a+x)\right) \) are non-negative (since squares are always non-negative). For their sum to equal zero, both terms must individually equal zero: 1. \( (a + 1)^2 = 0 \) 2. \( \cot^2\left(\frac{\pi}{2}(a+x)\right) = 0 \) ### Step 4: Solve for \( a \) From \( (a + 1)^2 = 0 \), we find: \[ a + 1 = 0 \implies a = -1 \] ### Step 5: Solve for \( x \) Now, we solve \( \cot^2\left(\frac{\pi}{2}(a+x)\right) = 0 \). The cotangent function is zero when its argument is an odd multiple of \(\frac{\pi}{2}\): \[ \frac{\pi}{2}(a + x) = \frac{\pi}{2}(2n + 1) \quad \text{for } n \in \mathbb{Z} \] Substituting \( a = -1 \): \[ \frac{\pi}{2}(-1 + x) = \frac{\pi}{2}(2n + 1) \] This simplifies to: \[ -1 + x = 2n + 1 \] Thus, \[ x = 2n + 2 \] ### Final Values The values of \( a \) and \( x \) are: \[ a = -1, \quad x = 2n + 2 \quad \text{where } n \text{ is any integer.} \]

To solve the equation \( a^2 + 2a + \csc^2\left(\frac{\pi}{2}(a+x)\right) = 0 \), we will follow these steps: ### Step 1: Rewrite the equation We start with the given equation: \[ a^2 + 2a + \csc^2\left(\frac{\pi}{2}(a+x)\right) = 0 \] We can add and subtract 1 to the equation: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.6|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.7|1 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.4|4 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If sec 1.4=x, find the value of csc (2tan^(-1)x) .

If sin^(-1)(x/5) + cosec^(-1) (5/4) = pi/2 , then the value of x is

Let x in (0, pi/2) and log_(24 sin x) (24 cos x)=3/2 , then find the value of cosec^(2)x .

Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and f(x)=3 if x=pi/2 then find the value of k if lim_(x->pi/2) f(x)=f(pi/2)

If sec theta =sqrt(2) and (3pi)/(2)lt theta lt 2pi , find the value of (1+tan theta+"cosec"theta)/(1+cot theta-"cosec"theta) .

If sec theta = sqrt(2) and (3pi)/2 lt theta lt 2pi , find the value of (1+tan theta + cosec theta)/(1-cot theta - cosec theta) .

If "cosec"A=-sqrt(2) and (3pi)/(2) lt A lt 2pi , find the value of (tanA+"cosec"A+1)/(cotA-"cosecA"+1) .

The area bounded by the graph of y=f(x), f(x) gt0 on [0,a] and x-axis is (a^(2))/(2)+(a)/(2) sin a +(pi)/(2) cos a then find the value of f((pi)/(2)) .

If tanx=3/4, pi < x < (3pi)/2 , find the values of sin x/2 , cos x/2 and tan x/2.

If 4 sin^(2) x + cosec^(2)x, a , sin^(2)y+4 cosec^(2)y are in AP, then minimum value of (2a) is