Home
Class 12
MATHS
If tantheta+sintheta=mandtantheta-sinthe...

If `tantheta+sintheta=mandtantheta-sintheta=n`,then

A

`m^2-n^2=4mn`

B

`m^2+n^2=4mn`

C

`m^2-n^2=m^2+n^2`

D

`m^2-n^2=4sqrt(mn)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we are given two equations involving \( \tan \theta \) and \( \sin \theta \): 1. \( \tan \theta + \sin \theta = m \) 2. \( \tan \theta - \sin \theta = n \) We need to derive a relationship between \( m \), \( n \), and \( \theta \). ### Step 1: Square both equations First, we will square both equations to express \( m^2 \) and \( n^2 \): \[ m^2 = (\tan \theta + \sin \theta)^2 = \tan^2 \theta + \sin^2 \theta + 2 \tan \theta \sin \theta \] \[ n^2 = (\tan \theta - \sin \theta)^2 = \tan^2 \theta + \sin^2 \theta - 2 \tan \theta \sin \theta \] ### Step 2: Subtract the two equations Now, we will subtract \( n^2 \) from \( m^2 \): \[ m^2 - n^2 = \left( \tan^2 \theta + \sin^2 \theta + 2 \tan \theta \sin \theta \right) - \left( \tan^2 \theta + \sin^2 \theta - 2 \tan \theta \sin \theta \right) \] This simplifies to: \[ m^2 - n^2 = 4 \tan \theta \sin \theta \] ### Step 3: Multiply \( m \) and \( n \) Next, we will find the product \( mn \): \[ mn = (\tan \theta + \sin \theta)(\tan \theta - \sin \theta) = \tan^2 \theta - \sin^2 \theta \] ### Step 4: Express \( \tan^2 \theta \) in terms of \( \sin^2 \theta \) Recall that \( \tan^2 \theta = \frac{\sin^2 \theta}{\cos^2 \theta} \). Thus, we can rewrite \( mn \): \[ mn = \frac{\sin^2 \theta}{\cos^2 \theta} - \sin^2 \theta = \sin^2 \theta \left( \frac{1}{\cos^2 \theta} - 1 \right) = \sin^2 \theta \left( \sec^2 \theta - 1 \right) \] Using the identity \( \sec^2 \theta - 1 = \tan^2 \theta \): \[ mn = \sin^2 \theta \tan^2 \theta \] ### Step 5: Relate \( m^2 - n^2 \) to \( mn \) Now we can express \( 4 \tan \theta \sin \theta \) in terms of \( mn \): \[ m^2 - n^2 = 4 \tan \theta \sin \theta = 4 \sqrt{mn} \] ### Conclusion Thus, we have derived the relationship: \[ m^2 - n^2 = 4 \sqrt{mn} \]

To solve the problem, we are given two equations involving \( \tan \theta \) and \( \sin \theta \): 1. \( \tan \theta + \sin \theta = m \) 2. \( \tan \theta - \sin \theta = n \) We need to derive a relationship between \( m \), \( n \), and \( \theta \). ### Step 1: Square both equations ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If tantheta+sintheta=m and tantheta-sintheta=n , then prove that: m^(2)-n^(2)=4sqrt(mn)

If tantheta+sintheta=m and tantheta-sintheta=n , show that m^2-n^2= 4sqrt(n m)

If tantheta +sintheta = m and tantheta-sintheta=n , then prove that m^(2)-n^(2)=4sinthetatantheta .

If t a ntheta+sintheta=m and tantheta-sintheta=n , show m^(2)-n^2=4sqrt(m ndot)

Prove the following trigonometric identities: (tantheta+sintheta)/(tantheta-sintheta)=(sectheta+1)/(sectheta-1)

int_(sintheta)^(costheta)f(xtantheta)dx(w h e r etheta!=(npi)/2,n in I)) is equal to (a) -costhetaint_1^(tantheta)f(xsintheta)dx (b) -tanthetaint_(costheta)^(sintheta)f(x)dx (c) sinthetathetaint_1^(tantheta)f(xcostheta)dx (d) 1/(tantheta)thetaint_(sintheta)^(sinthetatantheta)f(x)dx

If 5tantheta=4, then (5sintheta-3costheta)/(5sintheta+2costheta) is equal to 0 (b) 1 (c) 1/6 (d) 6

Prove the following identities: (tantheta+sectheta-1)/(tantheta-sectheta+1)=(1+sintheta)/(costheta)

Simplify costheta[[costheta,sintheta],[sintheta,costheta]]+sintheta[[sintheta,-costheta],[costheta,sintheta]]

If 3costheta-4sintheta=2costheta+sintheta , find tantheta .

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If tantheta =-4/3," then " sintheta is

    Text Solution

    |

  2. If sinx+cosecx=2," then "sin^nx+cosec^nx is equal to

    Text Solution

    |

  3. If tantheta+sintheta=mandtantheta-sintheta=n,then

    Text Solution

    |

  4. If cosectheta-cottheta=q, then the value of cosectheta is

    Text Solution

    |

  5. If (sinx)/a=(cosx)/b=(tanx)/c=k , then b c+1/(c k)+(a k)/(1+b k) is eq...

    Text Solution

    |

  6. If sec^4theta+sec^2theta=10+tan^4theta+tan^2theta", then "sin^2theta=

    Text Solution

    |

  7. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  8. If secalpha and cosecalpha are the roots of the equation x^2-px+q=0, t...

    Text Solution

    |

  9. Which of the following is not the quadratic equation whose roots are c...

    Text Solution

    |

  10. If sinx+sin^2x=1, then find the value of cos^(12)x +3cos^(10)x + 3 cos...

    Text Solution

    |

  11. 3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(...

    Text Solution

    |

  12. If sinx+sin^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equ...

    Text Solution

    |

  13. (1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

    Text Solution

    |

  14. Let A0A1A2A3A4A5 be a regular hexagon inscribed in a circle of unit ra...

    Text Solution

    |

  15. A circle is drawn in a sectore of a larger circle of radius r, as show...

    Text Solution

    |

  16. A right triangle has perimeter of length 7 and hypotenuse of length 3....

    Text Solution

    |

  17. Given that the side length of a rhombus is the geometric mean of the ...

    Text Solution

    |

  18. Which of the following is correct?

    Text Solution

    |

  19. The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

    Text Solution

    |

  20. If sin^2theta=(x^2+y^2=1)/(2x) , then x must be -3 (b) -2 (c) 1 (d)...

    Text Solution

    |