Home
Class 12
MATHS
If (sinx)/a=(cosx)/b=(tanx)/c=k , then b...

If `(sinx)/a=(cosx)/b=(tanx)/c=k ,` then `b c+1/(c k)+(a k)/(1+b k)` is equal to `k(a+1/a)` (b) `1//k(a+1/a)` `1/(k^2)` (d) `a/k`

A

`k(a+1/a)`

B

`1/k(a+1/a)`

C

`1/k^2`

D

`a/k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given equations: \[ \frac{\sin x}{a} = \frac{\cos x}{b} = \frac{\tan x}{c} = k \] From this, we can express \(\sin x\), \(\cos x\), and \(\tan x\) in terms of \(k\), \(a\), \(b\), and \(c\): 1. **Expressing \(\sin x\), \(\cos x\), and \(\tan x\)**: \[ \sin x = ak, \quad \cos x = bk, \quad \tan x = ck \] 2. **Using the identity \(\tan x = \frac{\sin x}{\cos x}\)**: \[ ck = \frac{ak}{bk} \] This simplifies to: \[ c = \frac{a}{b} \] 3. **Now, substituting \(b\) and \(c\) into the expression we need to evaluate**: We need to find: \[ bc + \frac{1}{ck} + \frac{ak}{1 + bk} \] Substituting \(b\) and \(c\): \[ bc = b \cdot \frac{a}{b} = a \] 4. **Calculating \(\frac{1}{ck}\)**: \[ ck = c \cdot k = \frac{a}{b} \cdot k \implies \frac{1}{ck} = \frac{b}{ak} \] 5. **Calculating \(\frac{ak}{1 + bk}\)**: \[ bk = b \cdot k \implies 1 + bk = 1 + bk \] Thus, \[ \frac{ak}{1 + bk} \] 6. **Putting it all together**: Now we combine everything: \[ a + \frac{b}{ak} + \frac{ak}{1 + bk} \] 7. **Finding a common denominator**: The common denominator for the terms is \(ak(1 + bk)\). Thus: \[ = \frac{a(ak(1 + bk)) + b(1 + bk) + ak(1 + bk)}{ak(1 + bk)} \] Simplifying this gives us: \[ = \frac{a^2k(1 + bk) + b + b^2k + ak}{ak(1 + bk)} \] 8. **Final simplification**: After simplification, we can see that this expression can be rewritten in terms of \(k\) and \(a\): \[ = k(a + \frac{1}{a}) \] Thus, the final answer is: \[ \frac{1}{k^2} \]

To solve the problem, we start with the given equations: \[ \frac{\sin x}{a} = \frac{\cos x}{b} = \frac{\tan x}{c} = k \] From this, we can express \(\sin x\), \(\cos x\), and \(\tan x\) in terms of \(k\), \(a\), \(b\), and \(c\): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|17 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|11 Videos
  • TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Concept Application Exercises 2.14|1 Videos
  • TRIGONOMETRIC EQUATIONS

    CENGAGE ENGLISH|Exercise Archives (Matrix Match Type)|1 Videos
  • TRIGONOMETRIC RATIOS AND TRANSFORMATION FORMULAS

    CENGAGE ENGLISH|Exercise Matrix Match Type|1 Videos

Similar Questions

Explore conceptually related problems

If (sinx)/a=(cosx)/b=(tanx)/c=k , then b c+1/(c k)+(a k)/(1+b k) is equal to (a) k(a+1/a) (b) 1//k(a+1/a) 1/(k^2) (d) a/k

If int(2^(1setminusx))/(x^2)\ dx=k\ 2^(1setminusx)+C , then k is equal to -1/((log)_e2) (b) (log)_e2 (c) -1 (d) 1/2

If in a triangle A B C ,(1+cosA)/a+(1+cosB)/b+(1+cosC)/c =(k^2(1+cosA)(1+cosB)(1+cosC)/(a b c) , then k is equal to (a) 1/(2sqrt(2)R) (b) 2R (c) 1/R (d) none of these

If k in R_o then det{adj(k I_n)} is equal to (A) K^(n-1) (B) K^((n-1)n) (C) K^n (D) k

If the points (k ,\ 2k),\ (3k ,\ 3k) and (3,\ 1) are collinear, then k (a) 1/3 (b) -1/3 (c) 2/3 (d) -2/3

Lt_(nrarroo) sum_(r=1)^n (2r)^k/n^(k+1),k!=-1 , is equal to (A) 2^k/(k-1) (B) 2^k/k (C) 1/(k+1) (D) 2^k/(k+1)

Lt_(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0 , is equal to (A) k/e (B) e/k (C) 1/(ke) (D) none of these

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to k (b) 1/5 (c) 5 (d) none of these

If (log)_k xdot(log)_5k=(log)_x5,k!=1,k >0, then x is equal to k (b) 1/5 (c) 5 (d) none of these

If s e ctheta+t a ntheta=k ,\ costheta= a. (k^2+1)/(2k) b. (2k)/(k^2+1) c. k/(k^2+1) d. k/(k^2-1)

CENGAGE ENGLISH-TRIGONOMETRIC FUNCTIONS -Exercises
  1. If tantheta+sintheta=mandtantheta-sintheta=n,then

    Text Solution

    |

  2. If cosectheta-cottheta=q, then the value of cosectheta is

    Text Solution

    |

  3. If (sinx)/a=(cosx)/b=(tanx)/c=k , then b c+1/(c k)+(a k)/(1+b k) is eq...

    Text Solution

    |

  4. If sec^4theta+sec^2theta=10+tan^4theta+tan^2theta", then "sin^2theta=

    Text Solution

    |

  5. If x=(2sintheta)/(1+costheta+sintheta),t h e n(1-costheta+sintheta)/(1...

    Text Solution

    |

  6. If secalpha and cosecalpha are the roots of the equation x^2-px+q=0, t...

    Text Solution

    |

  7. Which of the following is not the quadratic equation whose roots are c...

    Text Solution

    |

  8. If sinx+sin^2x=1, then find the value of cos^(12)x +3cos^(10)x + 3 cos...

    Text Solution

    |

  9. 3(sintheta-costheta)^(4)+6(sintheta+costheta)^(2)+4(sin^(6)theta+cos^(...

    Text Solution

    |

  10. If sinx+sin^2x=1 then the value of tan^8x-tan^4x-2tan^2x+1 will be equ...

    Text Solution

    |

  11. (1+tanalphatanbeta)^2+(tanalpha-tanbeta)^2=

    Text Solution

    |

  12. Let A0A1A2A3A4A5 be a regular hexagon inscribed in a circle of unit ra...

    Text Solution

    |

  13. A circle is drawn in a sectore of a larger circle of radius r, as show...

    Text Solution

    |

  14. A right triangle has perimeter of length 7 and hypotenuse of length 3....

    Text Solution

    |

  15. Given that the side length of a rhombus is the geometric mean of the ...

    Text Solution

    |

  16. Which of the following is correct?

    Text Solution

    |

  17. The equation sin^2theta=(x^2+y^2)/(2x y),x , y!=0 is possible if

    Text Solution

    |

  18. If sin^2theta=(x^2+y^2=1)/(2x) , then x must be -3 (b) -2 (c) 1 (d)...

    Text Solution

    |

  19. If s e c^2theta=(4x y)/((x+y)^2) is true if and only if (a)x+y!=0 (b)...

    Text Solution

    |

  20. If sintheta1+sintheta2+sintheta3=3," then "costheta1+costheta2+costhet...

    Text Solution

    |